Задача.

Пусть при статистической обработке результатов экспериментов получен следующий группированный статистический ряд.

Таблица 1

$[x_{i-1},x_i]$	[21, 25]	[25, 29]	[29,33]	[33,37]	[37,41]
n_i	8	27	32	23	10
$\frac{n_i}{n}$	$\frac{8}{100}$	$\frac{27}{100}$	$\frac{32}{100}$	$\frac{23}{100}$	$\frac{10}{100}$

Точечные оценки случайной величины X:

$$\widetilde{m} = \widetilde{M} [X] = 31,32, \ \widetilde{D} [X] = 9,6910.$$

Проверить гипотезу о нормальном законе распределения генеральной совокупности X при уровне значимости $\alpha = 0.1$.

Задача

Построить доверительный интервал для математического ожидания M [X] нормально распределенной случайной величины X по выборке объемом 100 элементов, если точечная оценка математического ожидания \widetilde{M} [X] = 2,5, а точечная оценка среднего квадратического отклонения $\widetilde{\sigma}$ [X] = 0,12.

Задача

Пусть при статистической обработке результатов экспериментов получен следующий группированный статистический ряд.

Таблица 1

<i>X i</i>	0	1	2	3	4	5	6	7
n_i	7	21	26	21	13	7	3	2
$\frac{n_i}{n}$	$\frac{4}{79}$	$\frac{13}{79}$	$\frac{14}{79}$	$\frac{24}{79}$	16 79	$\frac{3}{79}$	$\frac{3}{79}$	$\frac{1}{79}$

Точечные оценки случайной величины X:

$$\widetilde{M}[X] = 2.55, \ \widetilde{D}[X] = 2.527.$$

Проверить гипотезу о распределения Пуассона генеральной совокупности X при уровне значимости $\alpha = 0.01$.

Пусть имеется модель наблюдений неполного ранга, удовлетворяющая условиям

$$M[Y] = X \cdot \beta = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, C[Y] = \sigma^2 \cdot E_n = \sigma^2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Привести эту модель к модели наблюдений полного ранга.

Вычислить оценки коэффициентов регрессии полученной модели, если в результате экспериментов были получены следующие значения функции отклика

$$Y = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

Задача

Пусть функция отклика имеет вид

$$y = \beta_0 + \beta_1 \cdot x_1.$$

Пусть значения переменной x_I , при которых проводились наблюдения, указаны в матрице плана

$$\widetilde{D} = \begin{pmatrix} -1 \\ 3 \\ -4 \\ 2 \end{pmatrix}.$$

В результате наблюдений получены следующие значения функции отклика

$$Y = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 2 \end{pmatrix}.$$

Вычислить оценки коэффициентов регрессии модели наблюдений