Расчетное задание.

- Рассчитать частоты срезов для цепей, состоящих из параллельно включенного конденсатора, номиналом 10 (100, 1000) пФ и нагрузки в 50 Ом.
- 2) Рассчитать частоты срезов для фильтров. Сопротивление нагрузки и источника считать равным 50 Ом.
 - а. Параллельно включенный конденсатор (C1 = 1 нФ; C2 = 10 нФ;
 C3= 100 нФ);
 - b. Последовательно включенная индуктивность ($L1 = 2 \text{ мк}\Gamma \text{H}$);
 - с. Г-звено (C3 = 100 нФ; L2 = 2 мкГн);
 - d. П-звено (C5 = 1 н Φ ; C6 = 100 н Φ ; L3 = 2 мкГн);
 - е. Т-звено (C7 = 100 н Φ ; L4 = 2 мкГн; L5 = 2 мкГн).

В отчете привести полученные значения частот фильтров, итоговые формулы для расчета частот срезов фильтров, в том числе с подставленными численными значениями.

Методические указания.

Рассмотрим работу с сосредоточенными элементами на примере фильтров различной топологии.

Создайте новое рабочее окно, выбрав пункт меню File – New Schematic.

🗘 LTspice IV - [Draft2]	
$rac{1}{\sqrt{2}}$ Eile Edit Hierarchy View Simulate Tools Window Help	_ 8 ×
│ ❷ ☞ ■ ♈ Ў ♨ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥	Êm Ê∃ Aa ∘p

На панели инструментов, выбирая компоненты – конденсатор, резистор, земля, а также источник сигнала, установите их на рабочее поле, как показано на рисунке ниже. (Для удаления компонента выделите окно с рабочим полем, нажмите клавишу Delete на клавиатуре и нажмите на компоненты, которые следует удалить.) Соедините свободные выводы символов, выбрав инструмент рисования соединений *2*.

Нажимая правой кнопкой на компоненты, установите значение сопротивления 50 Ом, значение емкости 10 нФ.

D Capacitor - C1	×		
Manufacturer: Part Number: Type: Select Capacitor Capacitor Properties Capacitance[F]: Voltage Rating[V]: RMS Current Rating[A]: Equiv. Series Resistance[Ω]:	OK Cancel	Resistor - R1 Manufacturer: Part Number: Select Resistor Resistor Properties	OK Cancel
Equiv. Series Inductance[H]:		Resistance[Ω]:	50
Equiv. Parallel Resistance[Ω]:		Tolerance[%]:	
Equiv. Parallel Capacitance[F]:		Power Rating[W]:	

В режиме расширенной настройки источника сигнала, установите амплитуду сигнала для малосигнального анализа, равную 1, а сопротивление источника - 50 Ом. Нажмите ОК.

Independent Voltage Source - V1	×
 Independent Voltage Source - V1 Functions (none) PULSE(V1 V2 Tdelay Trise Tfall Ton Period Ncycles) SINE(Voffset Vamp Freq Td Theta Phi Ncycles) EXP(V1 V2 Td1 Tau1 Td2 Tau2) SFFM(Voff Vamp Fcar MDI Fsig) PWL(t1 v1 t2 v2) PWL FILE: Browse 	DC Value DC value: Make this information visible on schematic: ♥ Small signal AC analysis(AC) AC Amplitude: 1 AC Phase: Make this information visible on schematic: ♥ Parasitic Properties Series Resistance[Ω]: 50 Parallel Capacitance[F]:
PWL FILE: Browse	Make this information visible on schematic: ♥ Parasitic Properties Series Resistance[Ω]: 50 Parallel Capacitance[F]: Make this information visible on schematic: ♥
Additional PWL Points Make this information visible on schematic: 🔽	Cancel

Настройте параметры симулирования, как показано на рисунке ниже. Нажмите ОК. Запустите симуляцию.

Edit Simulation Command	—
Transient AC Analysis DC sweep Noise	DC Transfer DC op pnt
Compute the small signal AC behavior of the o point.	ircuit linearized about its DC operating
Type of Sweep:	Octave -
Number of points per octave:	100
Start Frequency:	1e3
Stop Frequency:	100e6
Syntax: .ac <oct, dec,="" lin=""> <npoints> <startfree< td=""><td>q> <endfreq></endfreq></td></startfree<></npoints></oct,>	q> <endfreq></endfreq>
.ac oct 100 1e3 100e6	
Cancel	

В качестве наблюдаемого сигнала выберем напряжение на резисторе. Наведите мышкой на верхний контакт резистора для появления значка пробника, как показано на рисунке, после чего нажмите левую кнопку мыши.

D LTspice IV - Draft2	
Eile Edit Hierarchy View Simulate Iools Window Help	
┏ ☞ ■ ♈ 米 ⊕ € Q ♥ 絵 竺 ☴ 唔 階 ♥ & 凾 @ ▲ 酉 曇 ℓ → 뗵 ミ キ 3 文ひ ♡ ♡ ♡ ☆ テテ	Ê <i>Aa .</i> °P
🔨 Draft2 🔛 Draft2	
E Draft2	
1KHz 10KHz 100KHz 1MHz 10MHz	100MHz
🕇 Draft2	
V1 AC 1 Rser=50 .ac oct 100 1e3 100e6	
Click to plot V(N001).	.đ

В окне результатов отобразятся амплитудно-частотная и фазочастотная характеристики.

/		
🗗 LTspice IV - Draft2		
<u>File View Plot Settings</u>	imulation <u>T</u> ools <u>W</u> indow <u>H</u> elp	
🖻 📽 🖬 😭 🛪 🖑) ♥ ♥ ♥ ♥ ♥ Ё !!!! 🖬 № 📽 ံ № 10 ♣ 🕹 ♣ 🕹 🕸 / ↓ 🔍 🖓 🕫 🕫	C° Ém É∃ Aa ≈p
🔨 Draft2 🔛 Draft2		
Draft2	6	
	V(n001)	01
-4dB		U.
-12dB-		18°
-2UdB-		36°
-28dB-		54°
-36dB-		72"
-44dB-		-12
-52dB		
		TUUMITZ
L Droft2		
	$\begin{array}{c} V1 \\ AC 1 \\ Rser=50 \end{array} \begin{array}{c} C1 \\ 10n \end{array} \begin{array}{c} R1 \\ 50 \end{array}$	
	ac oci tuo teo tuoeb	
Ľ		
Right-Click to edit expression. C	Control-Left Click to integrate	

Откройте характеристики конденсатора и добавьте паразитную индуктивность в размере 2 нГн. Нажмите ОК и запустите симуляцию.

D Capacitor - C1	- ×
Manufacturer: Part Number: Type: Select Capacitor	OK Cancel
Capacitor Properties Capacitance[F]:	10n
Voltage Rating[V]:	
RMS Current Rating[A]:	
Equiv. Series Resistance[Ω]:	
Equiv. Series Inductance[H]:	2n
Equiv. Parallel Resistance[Ω]:	
Equiv. Parallel Capacitance[F]:	

D Lispice IV - Draft2			
<u>F</u> ile <u>E</u> dit H <u>i</u> erarchy <u>V</u> iew <u>S</u> imul	ate <u>T</u> ools <u>W</u> indow <u>H</u> elp		
🖻 🛎 🖬 😤 🗏 🖲 🍕	< < × ≌ ! = = ≤ * ⊁ ■ € #	a @ @ <mark>∠</mark> → @ < +	3 文 D 🖑 O O C 🛱 É∃ Aa ∘p
🔨 Draft2 🔛 Draft2			
Draft2			
	Vin001	1	
0dB		J	100°
-18dB-			- 60°
-36dB-			
-54dB			
-72dB-			¥ ⊢ -20°
-004R-			⊢ -60°
-3000-			1001
	10KHz 100KHz	1 MHz	
-108dB+	10KHz 100KHz	1MHz	10MHz 100MHz
-108dB+	10KHz 100KHz	1MHz	100Hz 100Hz
108dB- 1KHz Craft2	10KHz 100KHz	1MHz	
108dB 1KHz 1 Draft2	10KHz 100KHz	1MHz	
108dB 1KHz 1 Draft2	10KHz 100KHz	1MHz	
108dB- 1KHz 1 Craft2	10KHz 100KHz	1MHz	
108dB 1KHz 1 Craft2	10KHz 100KHz		
108dB 1KHz 1¢ Draft2	10KHz 100KHz	1MHz C1 10n <50	
108dB 1KHz 1¢ Draft2	10KHz 100KHz	1MHz C1 = R1 10n 50	
108dB 1KHz 1 Draft2	10KHz 100KHz	1MHz C1 10n 50 6	
108dB 1KHz 1¢ Draft2	10KHz 100KHz	1MHz C1 = 10n ≤ 50 6	
108dB- 1KHz 1 Craft2	10KHz 100KHz	1MHz C1 = 10n ≤ 50 6	
108dB- 1KHz 1 Craft2	10KHz 10KHz 10KHz V1 AC 1 Kser=50 .ac oct 100 1e3 100e	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 1\\ 0\\ 1\\ 1\\ 0\\ 1\\ 1\\ 1\\ 0\\ 1\\ 1\\ 1\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	

На графиках характеристик можно наблюдать провал, который соответствует последовательному резонансу, частота которого определяется номиналом конденсатора и паразитной индуктивности.

Увеличьте частоту анализа до 1 ГГц. После частоты резонанса преобладает индуктивное сопротивление и компонент начинает вести себя как параллельно включенная индуктивность.

Лабораторное задание.

В отчете требуется привести частоты среза всех фильтров, значения частоты паразитных резонансов, амплитудно-частотные характеристики полученных фильтров, сравнения и выводы по характеристикам фильтров без учета и с учетом паразитных параметров компонентов.

Для исследования фильтров предлагаются следующие схемы включения (паразитную индуктивность компонентов принять равной 2 нГн, емкость – 5 пФ):

- Параллельно включенные конденсаторы (C1 = 1 нФ; C2 = 10 нФ; C3= 100 нФ);
- 2. Последовательно включенная индуктивность (L1 = 2 мкГн);
- 3. Г-звено (C1 = 100 нФ; L2 = 2 мкГн);

4. П-звено (C1 = 1 н Φ ; L1 = 2 мкГн; C2 = 100 н Φ ;);

5. Т-звено (L1 = 2 мкГн; C1 = 100 нФ; L2 = 2 мкГн).

