Задание № 1.

Оценить доверительный интервал X0 по данным выборочных измерений, приведенных в таблице при доверительной вероятности 0.95.

n	1	2	3	4	5	6
X	2.50	2.40	2.45	2.53	2.38	3.98

Решение:

 $n=6; \alpha=0.95;$

Значения коэффициентов Стьюдента t_{α}

эпачения коэффициентов ствюдента ц								
n	α							
	0.90	0.95	0.99					
2	6.31	12.71	63.66					
3	2.92	4.30	9.92					
4 5	2.35	3.18	5.84					
5	2.13	2.78	4.60					
6	2.02	2.57	4.03					
7	1.94	2.45	3.71					
8	1.90	2.36	3.50					
9	1.86	2.31	3.36					
10	1.83	2.26	3.25					

Из таблицы значений коэффициентов Стьюдента следует, что параметр t=2.57

X_{cp}:

$$\bar{x} = \frac{1}{n} (x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

где n — число измерений, x_n — значение измерения.

х_{ср} вычислим следующий образом:

$$\frac{1}{6}(2.5 + 2.4 + 2.45 + 2.53 + 2.38 + 3.98) = 2.707$$

Далее, вычисляем дисперсию случайной величины х по формуле:

$$\sigma^{2}(x) = \frac{\sum_{i=1}^{n} [M(x) - x_{i}]^{2}}{n}$$

$$\sigma^{2} = \frac{1}{6} \left((2.707 - 2.5)^{2} + (2.707 - 2.4)^{2} + (2.707 - 2.45)^{2} + (2.707 - 2.53)^{2} + (2.707 - 2.53)^{2} + (2.707 - 2.38)^{2} + (2.707 - 3.98)^{2} \right)$$

$$\sigma^{2} = 0.326989$$

Рассчитываем выборочную дисперсию S^2 по формуле:

$$S^2 = n \times \frac{\sigma^2}{n-1}$$
$$S^2 = 0.396$$

Извлечем квадратный корень и получим выборочное стандартное отклонение S.

$$S = \sqrt{6 \times \frac{0.33}{5}} = 0.63$$

Попробуем выявить ошибочные опытные данные по критерию Груббса:

Рассмотрим переменную θ : θ =max| x_i - x_{cp} | / S

Из выборки следует, что $x_i = x_{max} = 3.98$

$$\theta = \frac{|3.98 - 2.707|}{0.63} = 2.02$$

Предельное значение $\theta \kappa p$ находим в таблице:

Значения Окр.

		α	
n	0.90	0.95	0.99
3	1.41	1.41	1.41
4	1.64	1.69	1.72
5	1.79	1.87	1.96
6	1.89	2.00	2.13
7	1.97	2.09	2.26
8	2.04	2.17	2.37
9	2.10	2.24	2.46
10	2.15	2.29	2.54

Предельное значение $\theta \kappa p = 2.00$ $\theta > \theta \kappa p$, следовательно x_{max} является грубой ошибкой или выбросом.

В данном случае имеет место типичный случай малого числа измерений (n < 30) , следовательно в соответствии с распределением Стьюдента доверительный интервал определяется по формуле:

$$\overline{X_0} - \varepsilon < X_n < \overline{X}_0 + \varepsilon$$

, где точность накрытия:

$$\varepsilon = t * S / \sqrt{n}$$

$$\epsilon = 2.57 \times \frac{0.63}{\sqrt{6}}$$

$$\epsilon = 0.66$$

Ответ: доверительный интервал [2.707 +- 0.66]

Задание № 2.

Построить квадратичную математическую модель методом наименьших квадратов по базе данных.

X	0	1	2	4	5	6	7
Y	1.5	2	2	3.0	3.5	3.5	4.5

Наиболее вероятной является нелинейная связь: $Y=a+bx+cx^2$ Для подсчета коэффициентов уравнения a, b, c перестроим таблицу по вертикали, пополнив ее степенями аргумента.

X	Y	X^2	X^3	X^4	XY	X^2Y
0	1.5	0	0	0	0	0
1	2	1	1	1	2	2
2	2	4	8	16	4	8
4	3	16	64	256	12	48
5	3.5	25	125	625	17.5	87.5
6	3.5	36	216	1296	21	126
7	4.5	49	343	2401	31.5	220.5

Суммы:

25	20	131	757	4595	88	492

Решение следующей системы относительно a, b, c обеспечивает оптимальное расположение регрессионной линии в поле точек:

$$\begin{cases} an + b * \sum X_i + c * \sum X_i^2 = \sum Y_i \\ a \sum X_i + b * \sum X_i^2 + c * \sum X_i^3 = \sum X_i Y_i \\ a \sum X_i^2 + b * \sum X_i^3 + c * \sum X_i^4 = \sum X_i^2 Y_i \end{cases}$$

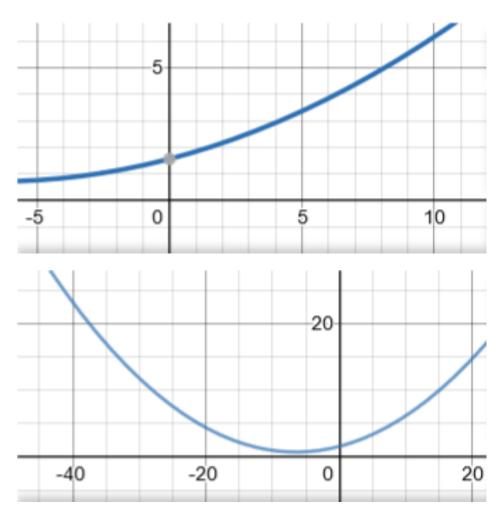
Таблично эта система:

7	25	131	20
25	131	757	88
131	757	4595	492

Решая систему, получаем a = 1.56, b = 0.26, c = 0.02.

Уравнение регрессии принимает окончательный вид:

$$Y = 1.56 + 0.26 X + 0.02 X^2$$



Задание № 4.

Энергозатраты при штамповке нагретой штамповки (Т) с противодавлением (Р) приведены в таблице. Необходимо выбрать из нее данные для составления плана и построить квазилинейную модель с учетом парной корреляции.

N	T	P	E1	E2	E3
1	1000	30	3.9	4.1	4.5
2	1000	10	0.05	0.07	0.10
3	900	10	1.49	1.57	1.61
4	900	30	4.28	4.55	4.61
5	850	25	4.47	4.31	4.35
6	850	20	3.52	3.56	3.61
7	800	30	4.85	4.91	4.95
8	800	10	2.81	2.30	2.31

Построить план выборкой;

Построить квазилинейную мат. Модель;

Критериальные проверки.

Решение.

Расширим таблицу, добавив Есреднее и Т*Р.

N	T	P	E 1	E2	E3	Ecp	T*P
1	1000	30	3.9	4.1	4.5	4.17	30000
2	1000	10	0.05	0.07	0.10	0.07	10000
3	900	10	1.49	1.57	1.61	1.56	9000
4	900	30	4.28	4.55	4.61	4.48	27000

5	850	25	4.47	4.31	4.35	4.38	21250
6	850	20	3.52	3.56	3.61	3.56	17000
7	800	30	4.85	4.91	4.95	4.90	24000
8	800	10	2.81	2.30	2.31	2.47	8000

Строим уравнение регрессии с учетом парной корреляции:

$$Y=C_0+C_1*X_1+C_2*X_2+C_{12}*X_1*X_2$$
, где

$$C0 = \frac{\sum Y_j}{N}$$
, $Ck = \frac{\sum Y_j * X_{jk}}{N}$, $Cij = \frac{\sum X_{ik} * X_{jk} * Y_k}{N}$

 $Y_j = E_{cp}, \, X_{jk} = E_k \, , \,$ итерируя j по столбцу.

$$C_0 = 3.20$$

$$C_1 = 2790.4$$

$$C_2 = 78.5$$

$$C_{12} = 68968.85$$

Итоговое уравнение:

$$Y=3.20+2790.4*X_1+78.5*X_2+68968.85*X_1*X_2$$

Критериальные проверки. Дополним таблицу построчной эмперической дисперсией.

N	T	P	E 1	E2	E3	Ecp	S_j^2
1	1000	30	3.9	4.1	4.5	4.17	0.1867
2	1000	10	0.05	0.07	0.10	0.07	0.0013
3	900	10	1.49	1.57	1.61	1.56	0.0075

4	900	30	4.28	4.55	4.61	4.48	0.0618
5	850	25	4.47	4.31	4.35	4.38	0.0139
6	850	20	3.52	3.56	3.61	3.56	0.0041
7	800	30	4.85	4.91	4.95	4.90	0.0051
8	800	10	2.81	2.30	2.31	2.47	0.1701

$$S_j{}^2\!\!=\!\!(E_j(1)\!\!-\!\!E_{j,cp})^2\!\!+\!\!(E_j(2)\!\!-\!\!E_{j,cp})^2+(E_j(3)\!\!-\!\!E_{j,cp})^2$$

Сумма построчных дисперсий = 0.45

Параметр Кохрена G есть отношение максимальной построчной дисперсии к сумме построчных дисперсий.

$$G = \frac{0.1867}{0.45} = 0.4149$$

Сравним полученное значение с критическим из таблицы, 95%:

	1	2	3	4
2	0,9985	0,9750	0,9392	0,9057
3	9669	8709	7977	7457
4	9065	7679	6841	6287
5	0,8412	0,6838	0,5981	0,5440
6	7808	6161	5321	4803
7	7271	5612	4800	4307
8	0,6798	0,5157	0,4377	0,3910
9	6385	4775	4027	3584

Здесь по столбцам меняется количество переменных, по строкам N.

 $N=8,\ y=3,\ G_{\kappa p}=0.4377>G,\ a$ значит нет оснований отвергать гипотезу об однородности дисперсий и можно считать, что эксперимент воспроизводим.

Теперь проверим значимость слагаемых в уравнении регрессии с помощью критерия Стьюдента:

$$\left|C_{j},C_{ij}\right| >= t_{\kappa p} * S_{B}$$

 $S_{\scriptscriptstyle B}$ – дисперсия воспроизводимости

$$S_B^2 = S^2 / N(\gamma - 1)$$

$$S_B = 0.028125$$

Число степеней свободы = N*(y-1) = 16. По таблице распределения Стьюдента:

f			
	0.80	0.90	0.95
1	3.0770	6.3130	12.7060
2	1.8850	2.9200	4.3020
3	1.6377	2.35340	3.182
4	1.5332	2.13180	2.776
5	1.4759	2.01500	2.570
6	1.4390	1.943	2.4460
7	1.4149	1.8946	2.3646
8	1.3968	1.8596	2.3060
9	1.3830	1.8331	2.2622
10	1.3720	1.8125	2.2281
11	1.363	1.795	2.201
12	1.3562	1.7823	2.1788
13	1.3502	1.7709	2.1604
14	1.3450	1.7613	2.1448
15	1.3406	1.7530	2.1314
16	1.3360	1.7450	2.1190

 $t_{\kappa p} = 2.1190,\, t_{\kappa p} * S_{\scriptscriptstyle B} = 0.059596875$

Все абсолютные значения C_0 , C_1 , C_2 , C_{12} больше 0.059596875. Следовательно, **не будем исключать никаких параметров.**