МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ»

Кафедра «Теоретическая механика»

Одобрено методической комиссией по общенаучным дисциплинам

РАСЧЕТНО-ГРАФИЧЕСКИЕ РАБОТЫ ПО ДИНАМИКЕ

Методические указания по курсу «Теоретическая механика» для студентов всех специальностей очной и очно-заочной форм обучения

Под редакцией д.ф.-м.н., проф. Бондаря В.С.

Авторский коллектив: А.И.Блохина, Г.И.Норицына, В.К.Петров. Под редакцией д.ф.-м.н., проф. Бондаря В.С..

Расчетно-графические работы по динамике. Методические указания по курсу «Теоретическая механика» для студентов всех специальностей очной и очно-заочной форм обучения.

В настоящий сборник включены девять заданий по разделу «Динамика». При составлении методических указаний частично использовались материалы из «Сборника заданий для курсовых работ по теоретической механике» под общей редакцией проф. А.А.Яблонского. Приведены примеры выполнения всех заданий с пояснениями.

Интегрирование дифференциальных уравнений движения материальной точки

Материальная точка M массой m, получив в точке A начальную скорость V_0 , движется в изогнутой трубе ABC (рис. 1.1, 1.2), расположенной в вертикальной плоскости. Участки трубы или оба наклонные, или один горизонтальный, а другой наклонный. Угол наклона трубы $\alpha=30^{\circ}$.

На участке AB на материальную точку действует сила тяжести \vec{P} , постоянная сила \vec{Q} (ее направление указано на рисунках) и сила сопротивления среды \vec{R} , зависящая от скорости \vec{V} груза (направлена сила против движения). Трением груза о трубу на участке AB пренебрегаем.

В точке B материальная точка, не изменяя величины своей скорости, переходит на участок BC трубы, где на нее действует сила тяжести \vec{P} , сила трения (коэффициент трения груза о трубу f=0,2) и переменная сила \vec{F} , проекция которой F_X на ось X приведена в таблице Π -1.

Известно расстояние AB=l или время t_l движения от точки A до точки B. Требуется найти закон движения материальной точки на участке BC: x=f(t).

Указание. Решение задачи разбивается на две части. Сначала составляем и интегрируем методом разделения переменных дифференциальное уравнение движения материальной точки на участке AB, учитывая начальные условия. В случае, когда задана длина отрезка AB, целесообразно перейти от интегрирования по t к интегрированию по переменной z с помощью формулы:

$$\frac{dV_Z}{dt} = \frac{dV_Z}{dt} \cdot \frac{dz}{dz} = V_Z \frac{dV_Z}{dz}$$

Зная время движения на участке AB или длину этого участка, определяем скорость материальной точки в конце участка, в точке B. Эта скорость принимается за начальную при исследовании движения материальной точки на участке BC. После этого составляем и интегрируем дифференциальное уравнение движения материальной точки на участке BC.

Пример выполнения задания Д-1

На вертикальном участке AB трубы (рис.1.3) на точку массой m=1 кг действует сила тяжести и сила сопротивления $R=\mu V^2$. Скорость материальной точки M в начальный момент времени t=0 в точке A равна нулю. Длина участка AB=2 (м). На наклонном участке BC трубы ($\alpha=30^\circ$) на материальную точку действует сила тяжести, сила трения (коэффициент трения f=0,2) и переменная сила $F_X=16sin(3t)$. Требуется определить закон движения материальной точки на участке BC.

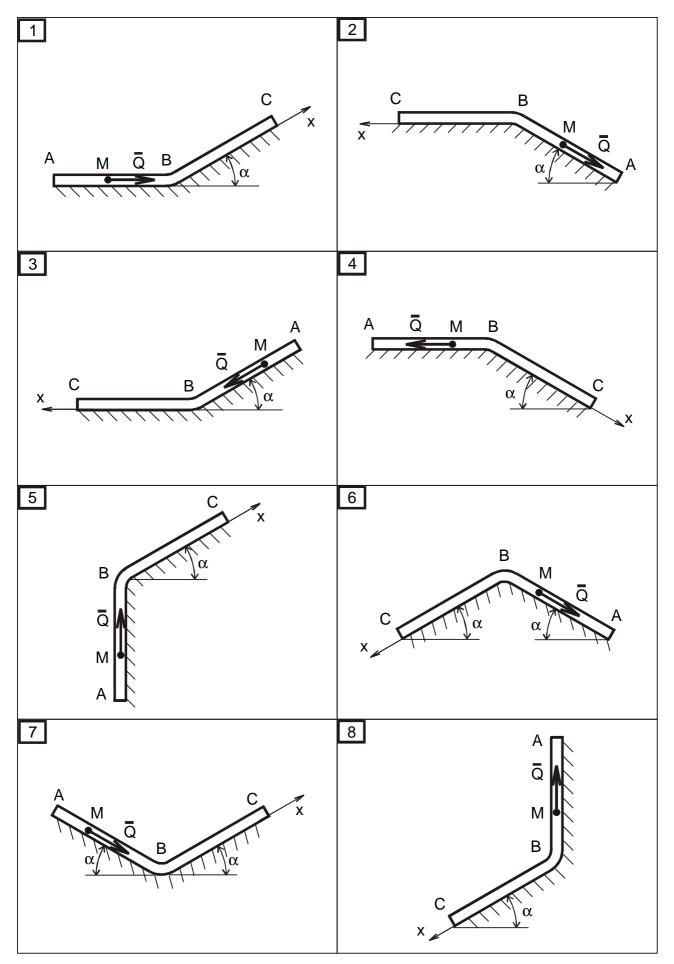
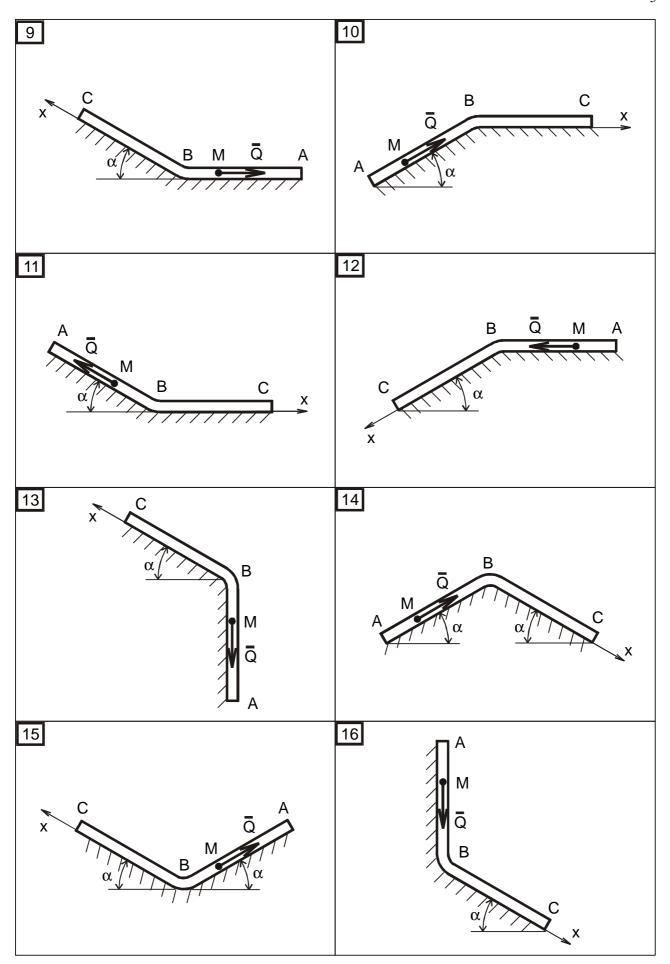


Рис. 1.1



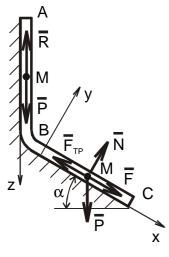

Рис. 1.2

Таблица Д-1

									гаолица д-
№ ва-	Рис.	m	V_0 ,	Q,	R,	μ	l,	t_1 ,	F_X ,
рианта		(кг)	м/с	Н	Н		M	c	Н
1	1	4,5	18	9	μV	0,45	-	5	3sin2t
2	2	3	32	4	μV^2	0,8	2,5	-	-8cos4t
3	3	2	2	2	μV	0,4	-	2,5	2sin4t
4	4	6	14	18	μV^2	0,6	5	-	-3cos2t
5	5	1,6	18	4	μV	0,4	-	2	4cos4t
6	6	1,2	22	2	μV^2	0,8	0,5	-	6t
7	7	2	5	2	μV	0,4	-	2,5	2sin4t
8	8	2,4	12	6	μV^2	0,48	1,5	-	6t
9	9	1,8	15	6	μV	0,3	1	3	9t²
10	10	4	12	12	μV^2	0,8	2,5	-	-8cos4t
11	11	2	20	6	μV	0,4	1	2,5	2sin4t
12	12	4,8	5	12	μV^2	0,24	5	-	-6sin2t
13	13	1,2	24	2	μV	0,4	-	1	4cos4t
14	14	2,4	12	6	μV^2	0,8	0,5	-	6t
15	15	4	10	6	μV	0,8	-	5	3sin2t
16	16	2,4	12	2	μV^2	0,48	1,5	-	6t
17	1	6	2,5	18	μV^2	0,6	5	-	-3cos2t
18	2	2	26	3	μV	0,6	-	5	2cos2t
19	3	4	2	4	μV^2	0,2	5	-	-6sin4t
20	4	1,6	18	4	μV	0,4	-	2	4cos4t
21	5	6	14	18	μV^2	0,6	5	-	-3cos2t
22	6	2,1	28	3	μV	0,5	-	3	8sin2t
23	7	2,4	1,2	2	μV^2	0,8	1,5	-	6t
24	8	2	20	6	μV	0,4	-	2,5	2sin4t
25	9	8	10	16	μV^2	0,8	15	-	-6cos2t
26	10	1,8	15	6	μV	0,3	-	2	9t²
27	11	2,5	1,5	8	μV^2	0,75	2,5	-	3sin2t
28	12	3	2,2	9	μV	0,6	ı	2,5	2cos2t
29	13	2	28	5	μV^2	0,6	0,5	_	-3cos2t
30	14	4,5	18	9	μV	0,5	-	3	8sin2t

Решение

Рассмотрим движение материальной точки на участке AB. Изобразим на чертеже материальную точку M в произвольном положении. На точку действуют силы \vec{P} и \vec{R} . Введем ось z в направлении от точки A к точке B. Составим дифференциальное уравнение движения точки в проекции на ось z

$$m \frac{dV_Z}{dt} = \sum F_{KZ}$$
 или $m \frac{dV_Z}{dt} = P_Z + R_Z$,

Учитывая, что $P_Z = mg$, $R_Z = -\mu V^2$, $V_Z = V$, получим

$$m\frac{dV}{dt} = mg - \mu V^2$$
, или $\frac{dV}{dt} = g - \frac{\mu}{m}V^2$. (1)

Введем обозначение $b = \frac{\mu}{m} = \frac{0.5}{1} = 0.5$ (1/м).

Рис. 1.3

Тогда (1) запишется так

$$\frac{dV}{dt} = g - bV^2 (2)$$

Так как в условии задачи задана длина участка AB, то целесообразно при интегрировании перейти от переменной t к переменной z в уравнении (2). Домножим на dz правую и левую части уравнения (2), получим

$$dz \frac{dV}{dt} = (g - bV^2)dz \quad , \quad \text{т. к.} \quad \frac{dz}{dt} = V \quad , \text{ то имеем}$$

$$VdV = (g - bV^2)dz \qquad (3)$$

Разделим переменные в уравнении (3) и вычислим интегралы от обеих частей равенства

$$\frac{VdV}{g - bV^2} = dz \qquad , \qquad -\frac{1}{2b} \ln(g - bV^2) = z + C_1 \quad . \tag{4}$$

Из начальных условий $V_0=0$, $z_0=0$ следует, что

$$C_1 = -\frac{1}{2h} \ln g \quad . {5}$$

Подставим (5) в (4), получим

$$-\frac{1}{2b}\ln\frac{g-bV^2}{g}=z \qquad \text{или} \qquad \frac{g-bV^2}{g}=e^{-2bz} \quad .$$

Так как длина участка трубы AB = 2 (м), то скорость в конце участка в точке B будет равна

$$V_B^2 = g \frac{1 - e^{-2bz}}{b} = 10 \frac{1 - e^{-2 \cdot 0, 5 \cdot 2}}{0, 5} = 20 \left(1 - \frac{1}{e^2} \right) ,$$

$$V_B = 4,15 \text{ M/c} . \tag{6}$$

Рассмотрим движение материальной точки на участке BC. Изобразим в произвольном положении точку и действующие на нее силы P=mg, N, F_{TP} и F. Введем оси координат x и y и составим дифференциальное уравнение движения точки в проекции на оси x и y

$$m\frac{dV_X}{dt} = mg\sin\alpha - F_{TP} + F_X \quad , \tag{7}$$

$$0 = N - mg \cos \alpha \quad . \tag{8}$$

Найдем силу N из уравнения (8)

$$N = mg \cos \alpha$$
.

Из этого равенства и закона Кулона F_{TP} =fN определим силу трения

$$F_{TP} = fmg \cos \alpha$$
.

Подставим значения сил трения и F_X в уравнение (7)

$$m\frac{dV_X}{dt} = mg(\sin\alpha - f\cos\alpha) + 16\sin(3t) \quad . \tag{9}$$

Разделим обе части уравнения (9) на m и подставим численные значения параметров

$$g(\sin \alpha - f \cos \alpha) = 9.8(\sin 30^{\circ} - 0.2 \cos 30^{\circ}) = 3.2$$
.

$$\frac{dV_X}{dt} = 3.2 + 16\sin(3t) . {10}$$

Умножая обе части уравнения (10) на dt и интегрируя, получим

$$V_X = 3.2t - \frac{16}{3}\cos(3t) + C_2 \quad . \tag{11}$$

Из начального условия $V(0) = V_B$ и (6) получим

$$C_2 = 4.15 + \frac{16}{3}\cos 0 = 9.48$$
.

Подставим значение C_2 в (11)

$$V_X = \frac{dx}{dt} = 3.2t - \frac{16}{3}\cos 3t + 9.48$$
.

Умножаем обе части уравнения на dt и интегрируем по t

$$x = 1,6t^2 - \frac{16}{9}\sin 3t + 9,48t + C_3 \quad . \tag{12}$$

Из начального условия x(0)=0, получим $C_3=0$. Поставляем значение C_3 в (12) и находим закон движения точки на участке BC

$$x = 1.6t^2 - \frac{16}{9}\sin 3t + 9.48t$$
.

Свободные колебания материальной точки.

Система пружин (рис. 2.1) с жесткостями C_1 и C_2 в начальный момент недеформирована. Тело весом P совершает колебания, упав с высоты h из состояния покоя или после сообщения ему начальной скорости V_0 вниз или вверх. Найти закон колебаний x(t) тела, частоту колебаний k, период T и амплитуду A этих колебаний. Необходимые данные взять из таблицы Д-2. Условия задачи таковы, что пластины, соединяющие пружины, во время колебаний остаются параллельными своим первоначальным положениям. Пластины и пружины невесомы. Положительное направление оси x вниз. Считать g=10 м/с². Наклонные плоскости гладкие.

Указание. В заданиях с рисунками 1, 4, 7 определить предварительно V_0 , учитывая параметр h.

Пример выполнения задания Д-2

Груз массой m=5 кг, прикрепленный к двум параллельно соединенным пружинам с коэффициентами жесткости $C_I=200$ н/м и $C_2=50$ н/м перемещается по наклонной плоскости с углом наклона $\alpha=60^{\circ}$ (рис.2.2a). В начальный момент груз находился в положении равновесия, и ему сообщили начальную скорость $V_0=0.8$ м/с, направленную вниз. Найти закон колебаний груза x=x(t) частоту колебаний, период и амплитуду этих колебаний.

Решение

Заменим прикрепленные к грузу пружины одной эквивалентной с коэффициентом жесткости $C_{\mathit{ЭКВ}}$. Поскольку пружины соединены параллельно, то

$$C_{2KB} = C_1 + C_2 = 250$$
 H/M.

Составим дифференциальное уравнение движения груза. Свяжем с грузом систему координат xOy, начало координат поместим в положение статического равновесия, а ось x направим в сторону удлинения пружины (рис.2.2б).

Рассмотрим груз в произвольном положении и изобразим действующие на него силы \vec{P} , $\vec{F}_{V\!IIP}$ и \vec{N} . Так как эквивалентная пружина имеет удлинение $l=x+\delta_{CT}$, то

$$F_{VIIP} = C_{\supset KB} l = C_{\supset KB} (x + \delta_{CT}) \quad , \tag{1}$$

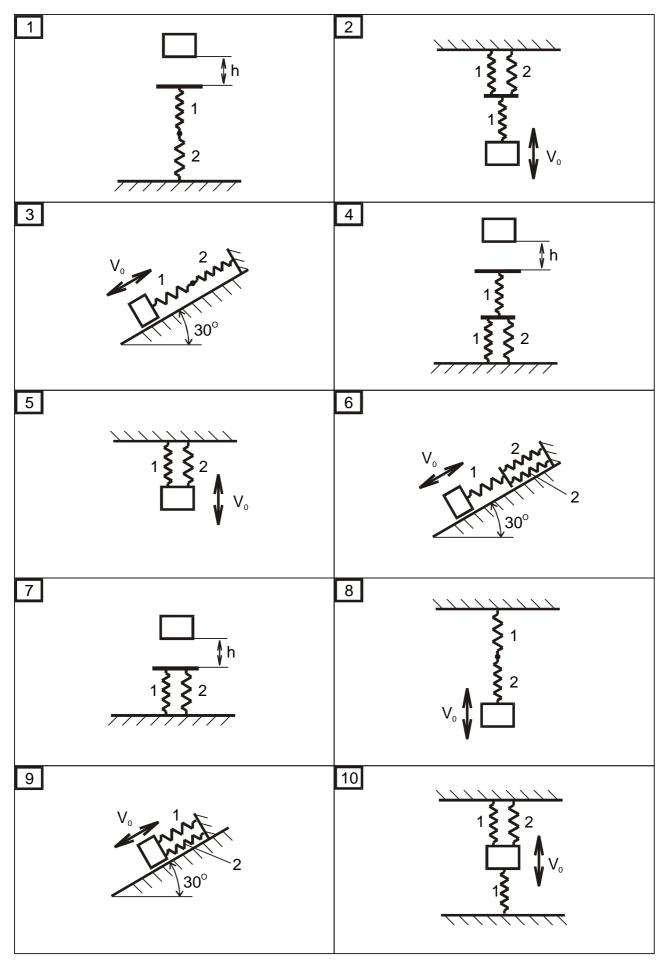


Рис. 2.1

Таблица Д-2

No॒	№	C_{I} ,	C_2 ,	Р,	h,	V_0 ,
варианта	рисунка	Н/см	Н/см	Н	СМ	см/с
1	1	200	50	20	5	-
2	2	190	60	25	-	50, вверх
3	3	180	70	30	-	70, вниз
4	4	170	80	35	8	-
5	5	160	90	40	-	30, вверх
6	6	150	100	45	-	40, вниз
7	7	140	110	50	3	-
8	8	130	120	55	-	70, вверх
9	9	120	140	60	-	50, вниз
10	10	110	150	65	-	20, вверх
11	1	100	160	40	7	-
12	2	90	170	45	-	60, вниз
13	3	80	180	50	-	40, вверх
14	4	70	190	55	6	-
15	5	60	200	60	-	50, вниз
16	6	50	150	65	-	30, вверх
17	7	60	140	70	10	-
18	8	70	130	75	-	80, вниз
19	9	80	120	80	-	40, вверх
20	10	90	110	85	-	80, вниз
21	1	100	90	30	9	-
22	2	110	80	35	-	70, вверх
23	3	120	70	40	-	50, вниз
24	4	130	60	45	4	-
25	5	140	50	50	-	40, вверх
26	6	150	40	55	-	60, вниз
27	7	160	30	60	8	-
28	8	170	90	65	-	30, вверх
29	9	180	70	70	-	20, вниз
30	10	190	60	75	-	50, вверх

где δ_{CT} – статическая деформация пружины.

Уравнение движения груза запишем в виде

$$m\ddot{x} = \sum_{k=1}^{n} F_{kx}$$
, где $\sum_{k=1}^{n} F_{kx} = mg \cos \alpha - F_{VIIP}$.

Тогда с учетом (1) уравнение примет вид

$$m\ddot{x} = mg\cos\alpha - C_{\Im KB}x - C_{\Im KB}\delta_{CT} .$$

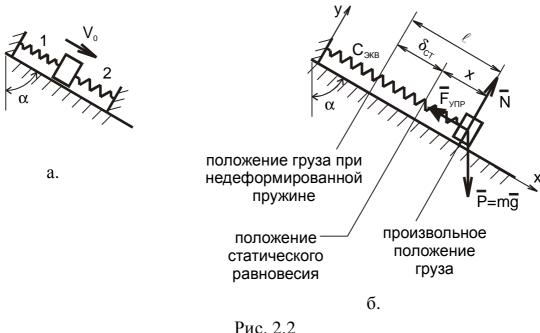


Рис. 2.2

Из условия равновесия груза следует, что

$$C_{\mathcal{H}B}\delta_{CT} = P\cos\alpha$$
.

Учитывая это соотношение, получим дифференциальное уравнение движения груза

$$\ddot{x} + k^2 x = 0 \quad , \tag{2}$$

где

$$k^2 = \frac{C_{\Im KB}}{m} = \frac{250}{5} = 50 \text{ c}^{-2}.$$

Частота колебаний $k = \sqrt{50}$ с⁻¹.

Полученное уравнение (2) является линейным однородным дифференциальным уравнением с постоянными коэффициентами, его решение ищем в виде

$$x = C_1 \cos kt + C_2 \sin kt \quad , \tag{3}$$

где C_1 и C_2 - постоянные интегрирования.

Начальные условия t=0 , $\dot{x}(0)=V_0=0.8$ м/с, $x(0)=x_0=0$.

Для определения постоянных интегрирования C_1 и C_2 найдем \dot{x} из (3)

$$\dot{x} = -C_1 k \sin(kt) + C_2 k \cos(kt) \quad . \tag{4}$$

Подставим начальные условия в (3) и (4), получим

$$C_1 = 0$$
; $C_2 = \frac{\dot{x}}{k} = \frac{0.8}{\sqrt{50}} = 0.1$.

Соотношение (3) примет окончательный вид

$$x = 0.1\sin(\sqrt{50} \cdot t) \quad . \tag{5}$$

Равенство (5) определяет закон движения груза, т.е. закон колебаний.

Период колебаний
$$T = \frac{2\pi}{k} = \frac{2\pi}{\sqrt{50}} = 0,889$$
 с.

Амплитуда колебаний
$$A = \sqrt{C_1^2 + C_2^2} = 0, 1 \ \, \text{м} \; .$$

На звено 1 механизма, угловая скорость которого равна ω_{10} , с некоторого момента времени (t=0) начинает действовать пара сил с моментом М (движущий момент) или движущая сила P.

Массы звеньев 1 и 2 механизма равны соответственно m_1 и m_2 , а масса поднимаемого груза 3 - m_3 . Момент сил сопротивления вращению ведомого звена 2 равен M_C . Радиусы больших и малых окружностей звеньев 1 и 2: R_1 , r_1 , R_2 , r_2 .

Схемы механизмов показаны на рис. 3.1-3.3, а необходимые для решения данные приведены в табл. 3.1.

Найти уравнение вращательного движения звена механизма, указанного в последней графе табл. 3.1. Определить также натяжение нитей в заданный момент времени, а в вариантах, где имеется соприкасание звеньев 1 и 2, найти окружное усилие в точке их касания. Звенья 1 и 2, для которых радиусы инерции ρ_1 и ρ_2 в табл. 3.1 не заданы, считать сплошными однородными дисками.

Пример выполнения задания Д-3

Дано: m_I =100 кг; m_2 =150 кг; m_3 =400 кг; M=4200+200t Hм; M_C =2000 Hм=const; R_I =60 см; R_2 = 40 см; r_2 = 20 см; ρ_I = 20 $\sqrt{2}$ см; ρ_2 = 30 см; ω_{I0} =2 сек⁻¹.

Найти уравнение $\varphi_2 = f(t)$ вращательного движения звена 2 механизма, а также окружное усилие S в точке касания звеньев 1 и 2 и натяжение нити T в момент времени $t_1 = 1$ сек (рис. 3.4.a)

Решение

К звену 1 механизма приложены (рис. 3.4.б) сила тяжести \vec{G}_1 , движущий момент M, составляющие реакции подшипника \vec{Y}_A , \vec{Z}_A , окружное усилие \vec{S}_1 и нормальная реакция \vec{N}_1 звена 2.

К звену 2 механизма приложены сила тяжести \vec{G}_2 , момент сил сопротивления M_C , составляющие реакции подшипника \vec{Y}_B , \vec{Z}_B , натяжение нити \vec{T} , к которой подвешен груз 3, окружное усилие \vec{S}_2 и нормальная реакция \vec{N}_2 звена 1.

К грузу 3 приложены сила тяжести \vec{G}_3 и натяжение нити \vec{T}' .

Очевидно: $\vec{S}_2 = -\vec{S}_1$, $\vec{N}_1 = -\vec{N}_2$, $\vec{T}' = -\vec{T}$.

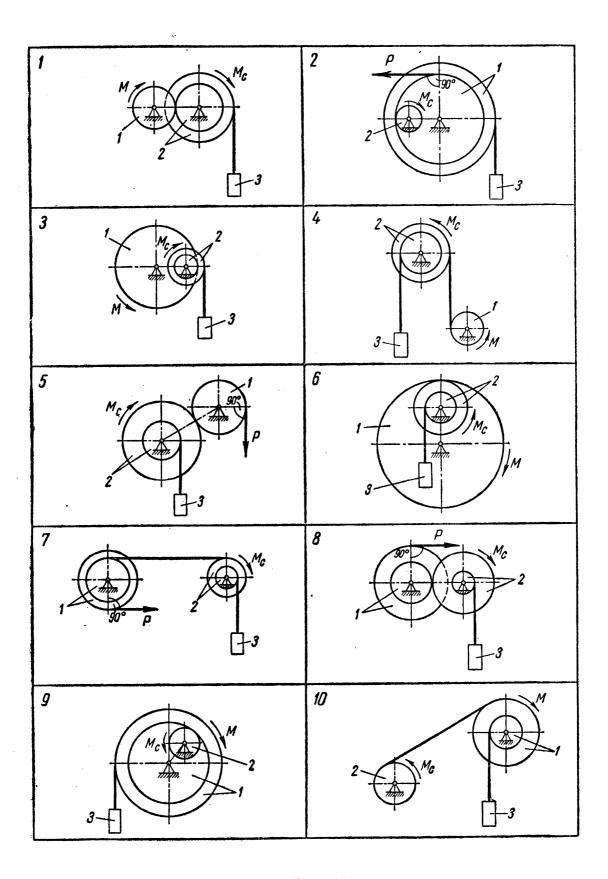


Рис. 3.1

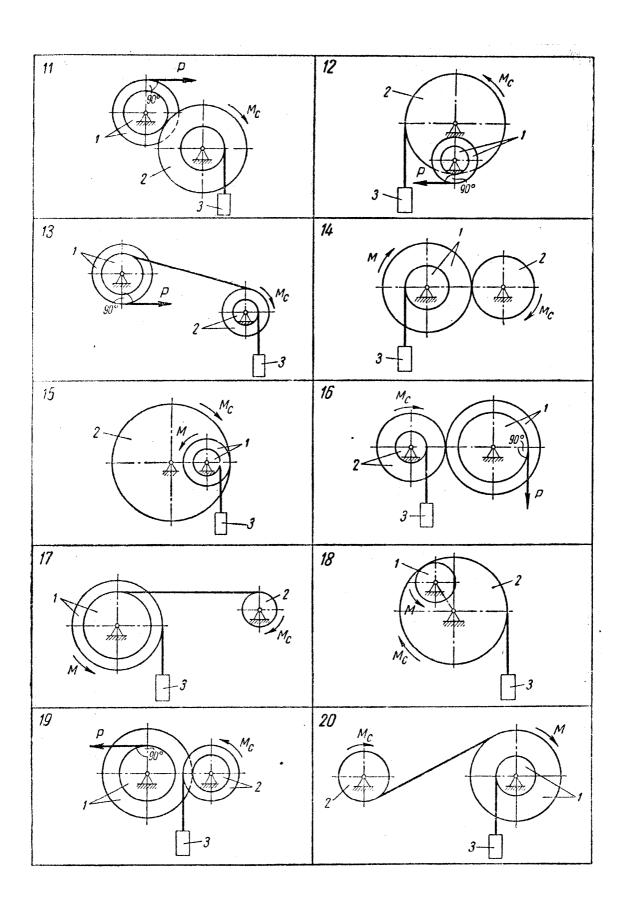


Рис. 3.2

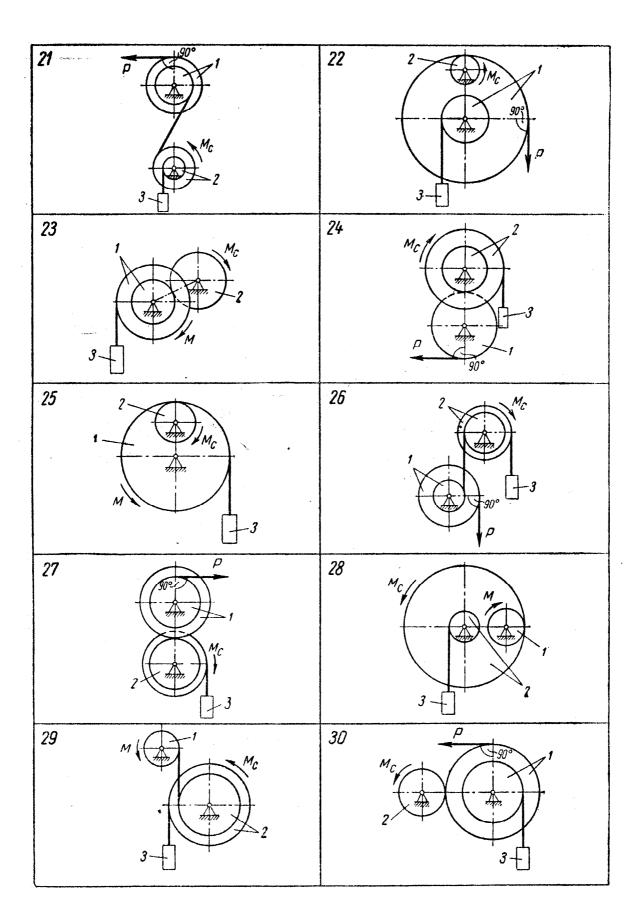


Рис. 3.3

Таблица Д-3

															1 7
№	m_1 ,	m_2 ,	m_3 ,	R_{I} ,	r_1 ,	R_2 ,	r_2 ,	$ ho_l,$	$ ho_2$,	M,	P,	M_C ,	ω_{l0} ,	t,	Най-
Вари-	ΚГ	ΚГ	КΓ	СМ	СМ	СМ	СМ	СМ	СМ	Нм	Н	Нм	c^{-1}	c	ТИ
анта															
1	100	300	500	20	-	60	40	-	60	2100+20t	-	1000	2	2	$\mathbf{\phi}_1$
2	300	80	500	70	50	20	1	60	-	-	$10200+100t^2$	600	1	0,5	$\mathbf{\phi}_2$
3	200	100	400	60	-	30	20	60	$20\sqrt{2}$	6100+20e ^t	-	800	0,5	2,5	ϕ_1
4	100	250	300	20	-	50	30	-	40	$1000+40t^2$	-	1400	1,5	2	$\mathbf{\phi}_1$
5	150	300	600	30	-	50	20	-	30	-	5500+200t	1500	2	1	$\mathbf{\phi}_2$
6	400	250	600	70	-	30	20	70	$20\sqrt{2}$	$4800+10e^{2t}$	ı	800	3	4	$\mathbf{\phi}_1$
7	300	200	400	60	40	30	20	50	20	-	$3000+100t^2$	500	0	3	$\mathbf{\phi}_2$
8	300	250	700	50	30	40	20	40	30	-	9700+50t ³	500	1	2	$\mathbf{\phi}_1$
9	200	100	500	80	60	20	ı	$50\sqrt{2}$	-	5900+30t	ı	600	2	3	$\mathbf{\phi}_2$
10	250	100	400	40	20	30	1	30	-	2500+50e ^t	-	1200	0	1,5	$\mathbf{\phi}_2$
11	150	300	700	40	30	60	30	30	40	-	$3900+50t^2$	1000	1	2	ϕ_1
12	100	200	600	30	20	60	1	$20\sqrt{2}$	60	-	5700+50t	1500	2	2	$\mathbf{\phi}_1$
13	180	100	300	50	40	30	20	$30\sqrt{2}$	20	-	2700+200t ³	400	0,5	1	$\mathbf{\phi}_2$
14	150	80	400	40	20	30	-	30	-	1800+20t	-	700	1,5	2,5	ϕ_1
15	300	180	500	20	10	50	-	$10\sqrt{2}$	50	$700+40t^2$	-	300	0	1,5	$\mathbf{\phi}_1$

Продолжение таблицы Д-3

$N_{\underline{0}}$	m_{I} ,	m_2 ,	m_3 ,	R_1 ,	r_1 ,	R_2 ,	r_2 ,	$ ho_{l},$	$ ho_2$,	M,	Р,	M_C ,	ω_{l0} ,	t,	Най-
Вари-	ΚГ	ΚГ	ΚГ	СМ	СМ	СМ	СМ	СМ	СМ	Нм	Н	Нм	c^{-1}	c	ТИ
анта															
16	300	250	400	60	40	50	30	50	40	-	7300+100t	1200	1	2	$\mathbf{\phi}_1$
17	250	100	800	50	30	20	1	40	-	$5400+50t^2$	-	900	2	2	ϕ_1
18	200	100	600	20	-	50	-	-	50	$1900+20e^{2t}$	-	1500	0,5	1	$\mathbf{\phi}_2$
19	250	150	400	50	30	30	20	40	$20\sqrt{2}$	-	14200+200t ²	500	0,5	2	ϕ_1
20	400	100	800	50	20	30	-	40	-	3700+50e ^t	-	1200	2	1	ϕ_2
21	200	150	300	50	40	30	20	$30\sqrt{2}$	20	-	3800+100t	800	1	1,5	$\mathbf{\phi}_2$
22	250	100	800	60	20	10	-	50	-	-	9700+200t ³	700	2	0,5	$\mathbf{\phi}_1$
23	200	80	400	40	20	30	-	30	-	2300+20t	-	900	0,5	1	$\mathbf{\phi}_2$
24	100	200	500	30	-	40	20	-	30	-	$12600+100t^2$	500	1,5	1	ϕ_1
25	150	80	400	60	-	20	-	60	-	$4900+40e^{3t}$	-	800	0	1,5	$\mathbf{\phi}_2$
26	250	200	500	50	20	40	30	40	30	-	3500+150t	600	2	2	ϕ_1
27	250	150	500	50	30	40	30	$30\sqrt{2}$	30	-	15200+100t ³	700	1,5	1	ϕ_1
28	60	200	900	20	1	60	10	-	50	$900+10t^2$	-	1500	0	2	$\mathbf{\phi}_2$
29	50	200	500	20	-	40	30	-	$25\sqrt{2}$	2100+20e ^t	-	1000	2	0,5	ϕ_1
30	300	60	600	50	30	20	-	40	-	-	7200+50t	700	1,5	1	ϕ_2

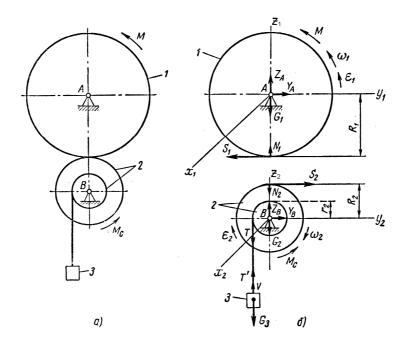


Рис. 3.4

Составим дифференциальное уравнение вращения звена 1 вокруг неподвижной оси x_1 :

$$I_1 \ddot{\varphi}_1 = M_1^e \quad .$$

Главный момент M_1^e внешних сил, приложенных к звену 1 (рис. 3.4,б), относительно оси x_I

$$M_1^e = M - S_1 R_1 .$$

Момент M задает направление ω_l , приводит в движение систему и поэтому принят положительным, а момент, создаваемый усилием \vec{S}_1 , направлен противоположно ω_l , препятствует вращению звена 1 и, следовательно, отрицателен.

Дифференциальное уравнение вращательного движения звена 1 примет вид

$$I_1 \ddot{\varphi}_1 = M - S_1 R_1 \quad . \tag{1}$$

Выразим угловое ускорение $\ddot{\varphi}_1$ звена 1 через угловое ускорение $\ddot{\varphi}_2$ звена 2. Так как

$$\frac{\ddot{\varphi}_1}{\ddot{\varphi}_2} = \frac{R_2}{R_1} \quad ,$$

$$\ddot{\varphi}_1 = \ddot{\varphi}_2 \frac{R_2}{R_1} \quad .$$

Тогда уравнение (1) принимает следующий вид:

$$I_1 \ddot{\varphi}_2 \frac{R_2}{R_1} = M - S_1 R_1 \quad . \tag{2}$$

Для составления дифференциального уравнения вращения вокруг оси x_2 звена 2, к которому подвешен груз 3, применим теорему об изменении кинетического момента:

$$\frac{dK_2}{dt} = M_2^e \quad . \tag{3}$$

Кинетический момент системы 2-3 относительно оси x_2

$$K_2 = I_2 \omega_2 + m_3 V r_2 \quad ,$$

где $I_2\omega_2$ - кинетический момент звена 2, вращающегося с угловой скоростью ω_2 вокруг неподвижной оси x_2 ;

 m_3Vr_2 - момент количества движения груза 3, движущегося поступательно со скоростью V.

Так как $V = \omega_2 r_2$, то

$$K_2 = (I_2 + m_3 r_2^2) \omega_2 = I_{np_2} \dot{\varphi}_2$$
,

где: $I_{np_2} = I_2 + m_3 r_2^2$ - приведенный к оси x_2 момент инерции системы 2-3.

Главный момент $M_2^{\ e}$ внешних сил, приложенных к системе 2-3 (рис.3.4), относительно оси x_2

$$M_2^e = S_2 R_2 - G_3 R_2 - M_C$$
.

Момент, создаваемый усилием \vec{S}_2 , задает направление ω_2 , приводит в движение систему 2-3 и поэтому принят положительным, а момент силы тяжести груза \vec{G}_3 и момент сил сопротивления \vec{M}_C направлены противоположно ω_2 , препятствуют движению системы и, следовательно, отрицательны. Таким образом, из уравнения (3)

$$\frac{d}{dt}(I_{np_2}\dot{\varphi}_2) = S_2R_2 - G_3r_2 - M_C .$$

и получаем следующее дифференциальное уравнение вращения звена 2:

$$I_{np_2}\ddot{\varphi}_2 = S_2 R_2 - G_3 r_2 - M_C \quad . \tag{4}$$

В полученной системе уравнений (2) и (4) неизвестны усилия $S_1 = S_2 = S$ и угловое ускорение $\ddot{\varphi}_2$. Для исключения S первое из уравнений этой системы домножим на R_2 , второе на R_1 и сложим их. Тогда получим

$$\left(I_1 \frac{R_2^2}{R_1} + I_{np_2} R_1\right) \ddot{\varphi}_2 = MR_2 - (G_3 r_2 + M_C) R_1 \quad ,$$

или

$$\ddot{\varphi}_2 = \frac{MR_1R_2 - (G_3r_2 + M_C)R_1^2}{I_1R_2^2 + I_{np_2}R_1^2} \quad . \tag{5}$$

Выражение (5) определяет в общем виде угловое ускорение звена 2 механизма. Учитывая исходные данные, найдем:

$$\begin{split} I_1 &= m_1 \rho_1^2 = 100 \big(0, 2\sqrt{2}\,\big)^2 = 8 \quad \text{kg·m}^2 \;\;, \\ I_{np_2} &= I_2 + m_3 r_2^2 = m_2 \rho_2^2 + m_3 r_2^2 = 150 \cdot 0, 3^2 + 400 \cdot 0, 2^2 = 29,5 \quad \text{kg·m}^2 \;. \end{split}$$

Подставляем числовые данные в (5)

$$\ddot{\varphi}_2 = \frac{(4200 + 200t)0.6 \cdot 0.4 - (400 \cdot 9.81 \cdot 0.2 + 2000) \cdot 0.6^2}{8 \cdot 0.4^2 + 29.5 \cdot 0.6^2} = 4.034t + 0.4597 \quad (\text{cek}^{-2}).$$

Интегрируем это уравнение дважды:

$$\dot{\varphi}_2 = 2,017t^2 + 0,4597t + C_1 ;$$

$$\varphi_2 = 0,672t^3 + 0,230t^2 + C_1t + C_2 .$$

Для определения постоянных интегрирования используем начальные условия задачи:

при
$$t=0$$
 $\varphi_2=0$, $\dot{\varphi}_2(0)=\omega_2(0)=\omega_1(0)\cdot\frac{R_1}{R_2}=2\cdot\frac{60}{40}=3$ сек⁻¹.

Следовательно,

$$\dot{\varphi}_2(0) = C_1$$
 , $\varphi_2(0) = C_2$,

т. е.

$$C_1 = 3 \text{ ces}^{-1}$$
 ; $C_2 = 0$.

Уравнение угловой скорости звена 2 имеет вид

$$\dot{\varphi}_2 = 2.017t^2 + 0.4597t + 3$$
 (cek⁻¹).

Искомое уравнение вращательного движения звена 2 имеет вид:

$$\varphi_2 = 0.672t^3 + 0.230t^2 + 3t$$
 (рад).

Окружное усилие S можно определить из уравнения (4):

$$S = S_2 = \frac{I_{np_2}\ddot{\varphi}_2 + G_3r_2 + M_C}{R_2} .$$

При $t_1=1$ сек

$$S = \frac{29,5(4,034 \cdot 1 + 0,4597) + 400 \cdot 9,81 \cdot 0,2 + 2000}{0,4} = 7295 \quad \text{H}.$$

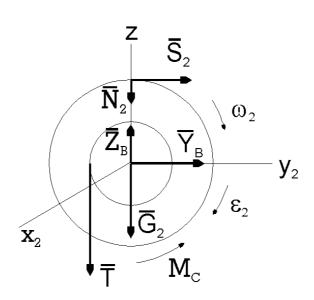


Рис. 3.5

Для определения натяжения нити T составим дифференциальное уравнение вращения звена 2 (рис. 3.5) в следующем виде:

$$I_2 \ddot{\varphi}_2 = S_2 R_2 - T r_2 - M_C \ ,$$

из которого

$$T = \frac{S_2 R_2 - M_C - I_2 \ddot{\varphi}_2}{r_2} .$$

При t_1 =1 сек

$$T = \frac{7295 \cdot 0.4 - 2000 - 13.5(4.0334 \cdot 1 + 0.4597)}{0.2} = 4285 \quad \text{H} .$$

Плоскопараллельное движение твердого тела

Барабан радиуса R весом P имеет проточку (как у катушки) радиуса r=0.5R (рис.4.1, табл. Д-4). К концам намотанных на барабан нитей приложены постоянные силы \vec{F}_1 и \vec{F}_2 , направления которых определяются углом β . Кроме сил на барабане действует пара с моментом M. При движении, начинающимся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости с углом наклона α так, как показано на рисунках.

Пренебрегая сопротивлением качению, определить закон движения центра масс барабана, т.е. $x_C = f(t)$, и наименьшее значение коэффициента трения f_{min} о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.

Указания. При решении задачи Д-4 следует использовать дифференциальные уравнения плоскопараллельного движения твердого тела. При составлении уравнений следует, во избежании ошибок в знаках, направить координатную ось x в ту сторону, куда предполагается направление движения центра масс барабана (точка C), и считать положительными моменты, направленные в сторону вращения барабана. Если фактически направление движения центра C является другим, то в результате получится $a_C < 0$ и найденная величина будет верной. Силу трения, когда не ясно, куда она направлена, можно направлять в любую сторону.

Определяя наименьшее значение коэффициента трения, при котором возможно качение без скольжения, следует учесть, что сила трения не может быть больше предельной, т.е. что $|F_{TP}| \le fN$, откуда $f \ge \frac{|F_{TP}|}{N}$. Следовательно $f_{\min} = \frac{|F_{TP}|}{N}$. Очень существенно, что во все эти выражения входят модули сил (мы не пишем |N|, так как в данной задаче не может быть N < 0). Если при расчетах получится $F_{TP} < 0$, то это означает лишь, что фактически сила F_{TP}

Пример выполнения задания Д-4

Барабан (сплошной однородный цилиндр) радиусом R и весом P начинает катиться без скольжения из состояния покоя по наклонной плоскости с углом α . На барабан действует сила и пара сил с моментом M (рис.4.2).

Дано:
$$P$$
 , $F=0.8\,P$, $M=1.1\,PR$, $\alpha=30\,^\circ$, $\beta=30\,^\circ$.

направлена в другую сторону.

Определить: 1) $x_C = f(t)$ - закон движения центра масс барабана; 2) f_{min} - наименьший коэффициент трения, при котором возможно качение без скольжения.

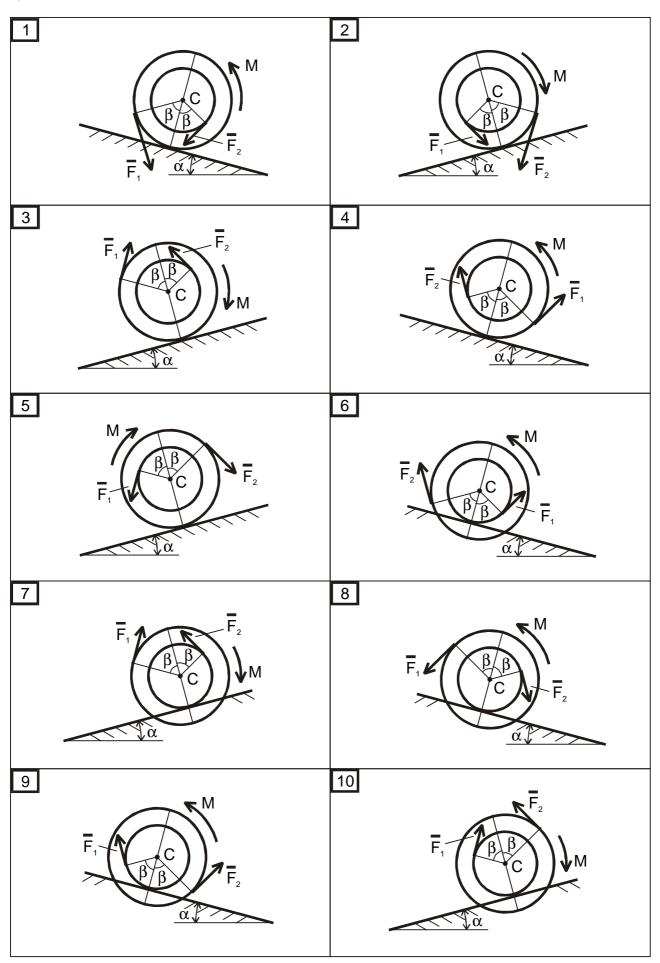
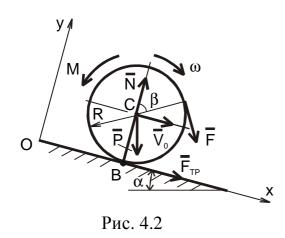


Рис. 4.1

Таблица Д-4

№ № а, ° β, ° F₁ F₂ M 1 1 1 30 60 0 0,4P 0 2 2 30 30 0,2P 0 0 3 3 0 30 0 0,2P 0,1PR 4 4 4 30 - 0 0 0,4PR 5 5 30 90 0,1P 0 0,2PR 6 6 6 0 60 0,3P 0,1P 0 7 7 30 0 0 0,3PR 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 1 30 60 0,4P 0 0 12 2							таолица д
варианта рисунка 60 0 0,4P 0 2 2 30 30 0,2P 0 0 3 3 0 30 0 0,2P 0,1PR 4 4 30 - 0 0 0,4PR 5 5 5 30 90 0,1P 0 0,2PR 6 6 6 0 60 0,3P 0,1P 0 0,2PR 6 6 6 0 60 0,3P 0,1P 0 0,2PR 8 8 0 60 0,2P 0 0,3PR 0,2PR 9 9 30 90 0 0,2P 0,4PR 0 0 0,3PR 10 10 30 60 0,1P 0 0,3PR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\mathcal{N}_{\underline{0}}$	$\mathcal{N}_{\underline{0}}$	α, °	<i>β</i> , °	F_{I}	F_2	M
2 2 30 30 0,2P 0 0 3 3 0 30 0 0,2P 0,1PR 4 4 4 30 - 0 0 0,4PR 5 5 5 30 90 0,1P 0 0,2PR 6 6 6 0 60 0,3P 0,1P 0 7 7 30 0 0 0,3P 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0	варианта	рисунка		,			
3 3 0 30 0 0,2P 0,1PR 4 4 30 - 0 0 0,4PR 5 5 30 90 0,1P 0 0,2PR 6 6 6 0 60 0,3P 0,1P 0 7 7 30 0 0 0,3PR 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0	1	1	30	60	0	0,4P	0
3 3 0 30 0 0,2P 0,1PR 4 4 30 - 0 0 0,4PR 5 5 30 90 0,1P 0 0,2PR 6 6 6 0 60 0,3P 0,1P 0 7 7 30 0 0 0,3PR 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0	2	2	30	30	0,2P	0	0
5 5 30 90 0,1P 0 0,2PR 6 6 0 60 0,3P 0,1P 0 7 7 30 0 0 0,3P 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P	3	3	0	30	0	0,2P	0,1PR
6 6 0 60 0,3P 0,1P 0 7 7 30 0 0 0,3P 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0	4	4	30	-	0	0	0,4PR
7 7 30 0 0 0,3P 0,2PR 8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1PR 0,3PR 19 9 0 90 0,4P	5	5	30	90	0,1P	0	0,2PR
8 8 0 60 0,2P 0 0,3PR 9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3PR 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0	6	6	0	60	0,3P	0,1P	0
9 9 30 90 0 0,2P 0,4PR 10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3P 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P <td>7</td> <td>7</td> <td>30</td> <td>0</td> <td>0</td> <td>0,3P</td> <td>0,2PR</td>	7	7	30	0	0	0,3P	0,2PR
10 10 30 60 0,1P 0 0,3PR 11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3P 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0	8	8	0	60	0,2P	0	0,3PR
11 1 30 60 0,4P 0 0 12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3P 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P	9	9	30	90	0	0,2P	0,4PR
12 2 0 30 0 0,2P 0,3PR 13 3 30 30 0,2P 0,3P 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0	10	10	30	60	0,1P	0	0,3PR
13 3 30 30 0,2P 0,3P 0 14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P<	11	1	30	60	0,4P	0	0
14 4 0 60 0,1P 0 0,1PR 15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P<	12	2	0	30	0	0,2P	0,3PR
15 5 30 30 0 0,2P 0,4PR 16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P<	13	3	30	30	0,2P	0,3P	0
16 6 0 90 0,1P 0 0,3PR 17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 <td>14</td> <td>4</td> <td>0</td> <td>60</td> <td>0,1P</td> <td>0</td> <td>0,1PR</td>	14	4	0	60	0,1P	0	0,1PR
17 7 30 60 0,2P 0 0,4PR 18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P<	15	5	30	30	0	0,2P	0,4PR
18 8 30 30 0 0,1P 0,3PR 19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	16	6	0	90	0,1P	0	0,3PR
19 9 0 90 0,4P 0 0,1PR 20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	17	7	30	60	0,2P	0	0,4PR
20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	18	8	30	30	0	0,1P	0,3PR
20 10 30 60 0 0,3P 0,4PR 21 1 30 60 0,1P 0,2P 0 22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	19	9	0	90	0,4P	0	0,1PR
22 2 0 30 0 0,3P 0,5PR 23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	20	10	30	60	0	0,3P	0,4PR
23 3 30 90 0,1P 0 0,2PR 24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	21	1	30	60	0,1P	0,2P	0
24 4 30 60 0 0,4P 0,1PR 25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	22	2	0	30	0	0,3P	0,5PR
25 5 30 30 0,2P 0 0,2PR 26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	23	3	30	90	0,1P	0	0,2PR
26 6 0 60 0,1P 0,2P 0 27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	24	4	30	60	0	0,4P	0,1PR
27 7 30 90 0,3P 0 0,1PR 28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	25	5	30	30	0,2P	0	0,2PR
28 8 30 60 0 0,1P 0,4PR 29 9 0 30 0,2P 0 0,1PR	26	6	0	60		0,2P	
29 9 0 30 0,2P 0 0,1PR	27	7	30	90	0,3P	0	0,1PR
	28	8	30	60		0,1P	0,4PR
30 10 30 90 0 0,4P 0,2PR	29	9	0	30	0,2P	0	0,1PR
	30	10	30	90	0	0,4P	0,2PR


Решение.

Барабан совершает плоскопараллельное движение под действием сил: \vec{P} , \vec{F} , \vec{N} и \vec{F}_{TP} и момента M. Так как направление силы трения \vec{F}_{TP} нам заранее неизвестно, выбираем его произвольно. Выбираем оси Ox, Oy и составляем дифференциальные уравнения плоскопараллельного движения

$$m\ddot{x}_C = \sum F_{kx}$$
 , $m\ddot{x}_C = F\cos\beta + P\sin\alpha + F_{TP}$; (1)

$$m\ddot{y}_C = \sum F_{ky}$$
, $m\ddot{y}_C = N - P\cos\alpha - F\sin\beta$; (2)

$$I_{Cz}\ddot{\varphi} = \sum M_{Cz} (\vec{F}_k) , \qquad \frac{mR^2}{2} \varepsilon = FR - F_{TP}R - M . \qquad (3)$$

За положительное направление для моментов принято направление угловой скорости ω , т.е. в ту сторону, куда будет вращаться барабан при движении центра от оси O_y .

В систему уравнений (1), (2), (3) входят пять неизвестных (\ddot{x}_C , \ddot{y}_C , ε , F_{TP} , N). Но так как $y_C = const = R$, то $\ddot{y}_C = 0$, следовательно осталось четыре неизвестных (\ddot{x}_C , ε , F_{TP} , N). Для решения задачи необходимо воспользоваться

соотношением из кинематики. Так как точка B является мгновенным центром скоростей, то

$$V_C = \dot{x}_C = \omega R$$
 , $a_C = \ddot{x}_C = \dot{\omega} R = \varepsilon R$. (4)

1) Определение $\ddot{x}_C = f(t)$.

Чтобы определить $\ddot{x}_C = f(t)$, исключим ε из уравнения (3), подставив в него (4)

$$\frac{1}{2}m\ddot{x}_C = F - F_{TP} - \frac{M}{R} \quad . \tag{5}$$

Далее из (1) и (5) исключим неизвестную силу F_{TP} , для этого сложим отдельно левые и правые части уравнений

$$\frac{3}{2}m\ddot{x}_{C} = F(1+\cos\beta) + P\sin\alpha - \frac{M}{R} ,$$

$$\frac{3}{2}m\ddot{x}_{C} = 0.8P(1+\cos30^{\circ}) + P\sin30^{\circ} - 1.1P ,$$

$$\frac{3}{2}m\ddot{x}_{C} = 0.89P .$$

Отсюда, так как P=mg получим для определения $x_C=f(t)$ следующее дифференциальное уравнение

$$\ddot{x}_C = 0.6g \quad . \tag{6}$$

Интегрируя уравнение (6), получим

$$\dot{x}_C = 0.6gt + C_1$$
 , $x_C = 0.3gt^2 + C_1t + C_2$. (7)

На основании начальных условий $\dot{x}_C(0)=0$, $x_C(0)=0$ и уравнений (7) имеем $C_1=0$, $C_2=0$.

Таким образом получим закон движения центра масс

$$x_C = 0.3gt^2 (8)$$

2) Определение f_{min} .

Для определения f исходим из того, что при качении без скольжения сила трения должна удовлетворять неравенству

$$|F_{TP}| \le fN \quad . \tag{9}$$

В (9) входят модули сил. Величину N находим из (2), учитывая, что $\ddot{y}_{\mathcal{C}}=0$. Получим

$$N = P\cos\alpha + F\sin\beta = P\cos 30^{\circ} + 0.8P\sin 30^{\circ} = 1.27P \quad . \tag{10}$$

Значение F_{TP} можно найти из (5) , подставив в него \ddot{x}_C из (6). Получим

$$0,3mg = F - F_{TP} - \frac{M}{R}$$
 , т. к. $mg = P$, то

$$F_{TP} = F - \frac{M}{R} - 0.3P = 0.8P - 1.1P - 0.3P = -0.6P \quad . \tag{11}$$

Знак указывает, что сила \vec{F}_{TP} имеет направление, противоположное указанному на рисунке.

Подставляя значения F_{TP} и N из равенств (10) и (11) в неравенство (9), получим $0.6P \le 1.27Pf$, откуда $f \ge 0.47$.

Следовательно наименьшим коэффициентом трения, при котором возможно качение барабана без скольжения, будет $f_{\min} = 0.47$.

Теорема об изменении кинетической энергии механической системы

Механическая система под действием сил тяжести приходит в движение из состояния покоя. Учитывается трение скольжения тела A и сопротивление качению тела D, катящегося без скольжения. Другими силами сопротивления и массами нерастяжимых нитей пренебрегаем. Требуется определить скорость и ускорение тела A в тот момент, когда оно пройдет путь $S_A = S$.

В задаче обозначено:

 m_A , m_B , m_D , m_E - массы тел A, B, D, E;

 R_{B} , r_{B} , R_{D} , r_{D} , R_{E} , r_{E} - радиусы больших и малых окружностей тел B, D, E;

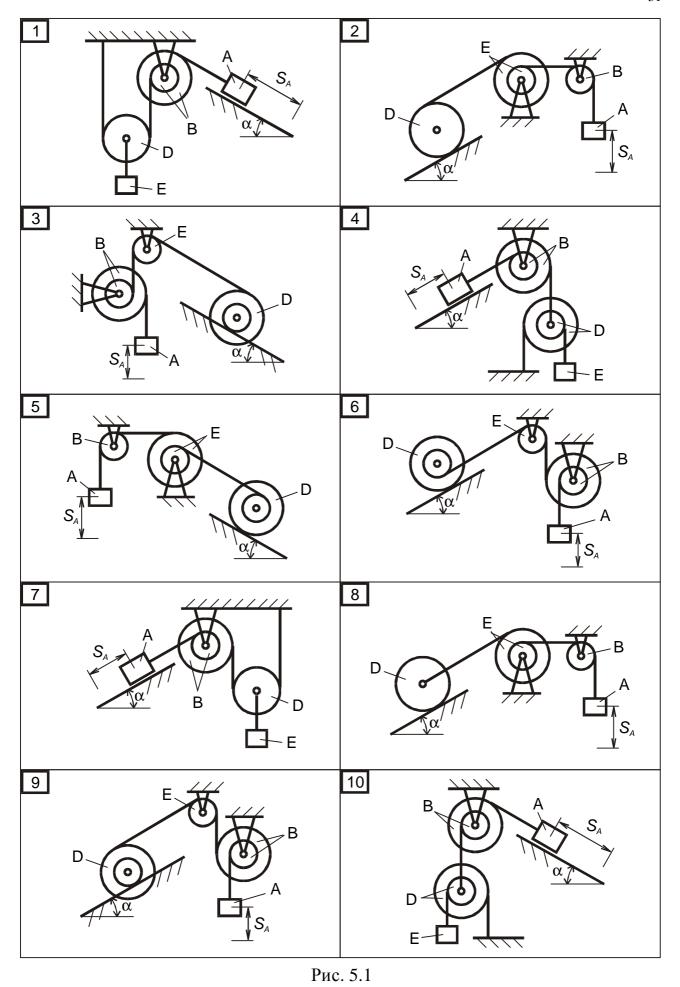
 ρ_{B} , ρ_{D} , ρ_{E} - радиусы инерции тел B, D, E относительно горизонтальных осей, проходящих через их центры тяжести;

 α - угол наклона плоскости к горизонту;

f - коэффициент трения скольжения тела A;

k - коэффициент трения качения тела D.

Блоки и катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами. Наклонные участки нитей параллельны соответствующим наклонным плоскостям.


Считать величину *m* равной *10* кг, $g=10 \text{ м/c}^2$.

Указания:

- 1. Выбрать направления S_A и V_A и определить скорости и перемещения всех тел системы в зависимости от V_A и S_A .
 - 2. Вычислить кинетическую энергию системы.
- 3. Вычислить сумму работ всех внешних сил, действующих на систему. Если сумма работ отрицательна, сменить направления S_A и V_A и вернуться к пункту 1. Если опять сумма работ получится отрицательной, то система под действием сил тяжести не приходит в движение из состояния покоя и V_A =0, a_A =0. Следует отметить, что при смене направлений S_A и V_A в силовой схеме необходимо изменить только направления сил сопротивления.
 - 4. Записать теорему об изменении кинетической энергии системы.
- 5. Из полученного соотношения определить скорость тела A (а также ускорение тела A в вариантах, перечисленных выше).

Пример выполнения задания Д-5

Дано: m=10 (кг), $m_A=3m$, $m_B=0.5m$, $m_D=4m$, $m_E=0.5m$, $R_B=20$ (см), $r_B=0.5R_B$, $R_D=10$ (см), $R_E=20$ (см), $r_E=0.5R_E$, $\rho_B=20$ (см), $\rho_E=10$ (см), $\alpha=30$ °, k=0.25 (см), S=1(м), блок D – сплошной цилиндр.

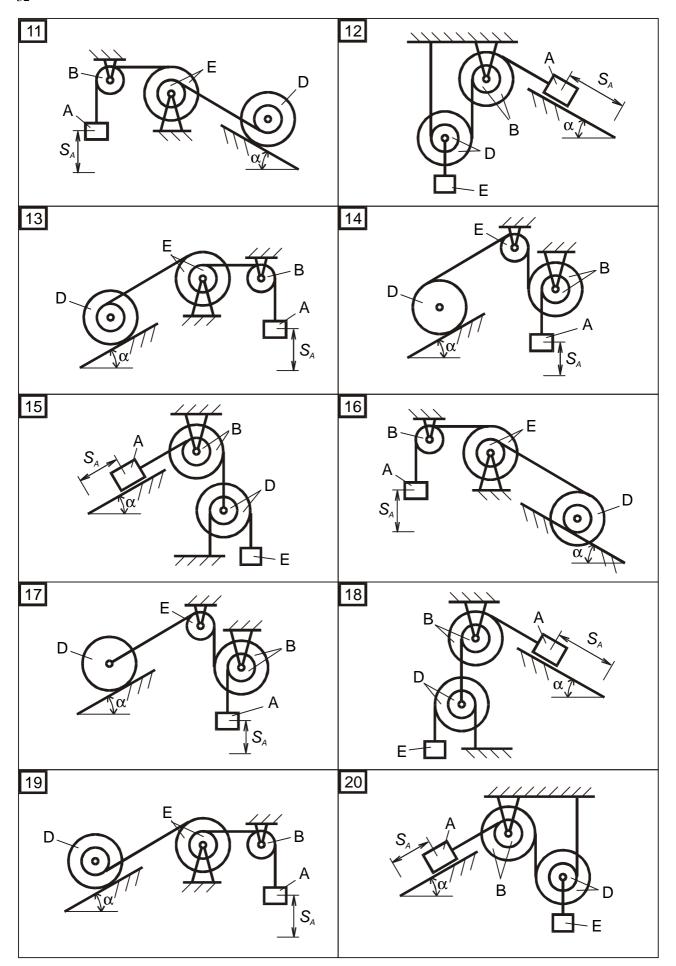


Рис. 5.2

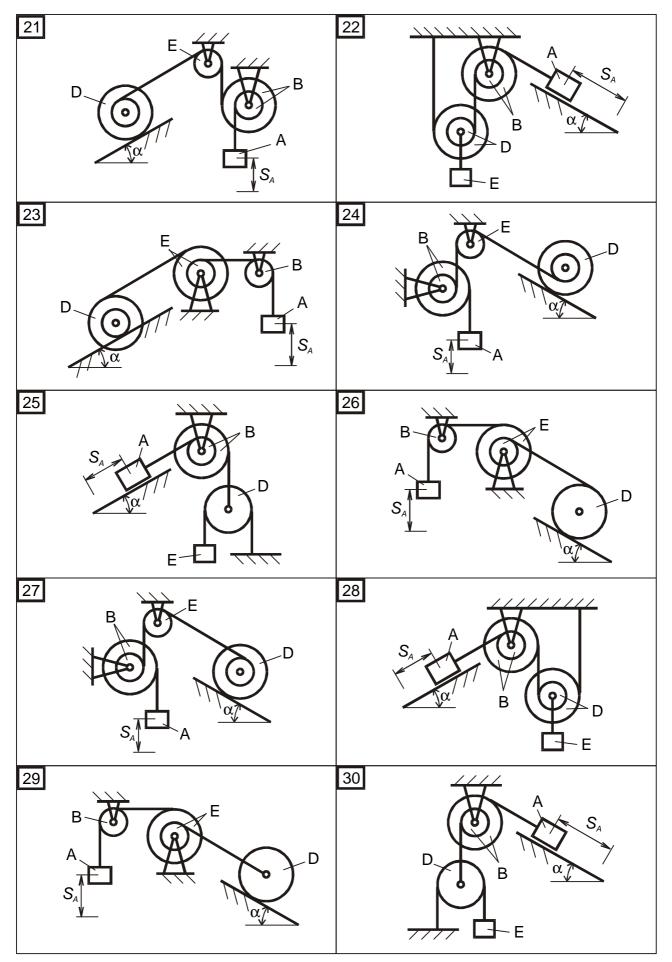


Рис. 5.3

Таблица Д-5

																	таолиі	ца Д-5
№ ва-	№ ри-	m_A ,	m_B ,	m_E ,	m_D ,	R_B ,	r_B ,	$ ho_{\!\scriptscriptstyle B},$	R_E ,	r_E ,	$\rho_{\scriptscriptstyle E}$,	R_D ,	r_D ,	$ ho_{\!\scriptscriptstyle D},$	α, °	f	k,	S,
рианта	сунка	ΚГ	ΚГ	КГ	ΚГ	M	M	M	M	M	M	M	M	M			СМ	M
1	1	5m	4m	2m	m	0,5	0,2	0,3	-	-	-	-	-	-	60	0,1	ı	1
2	2	6m	5m	4m	2m	-	-	-	0,6	0,3	0,4	-	0,5	-	45	-	0,2	2
3	3	4m	m	2m	m	0,7	0,3	0,4	-	-	-	0,6	0,2	0,3	15	-	0,1	1,5
4	4	8m	6m	3m	2m	0,6	0,2	0,3	-	_	-	0,5	0,1	0,2	30	0,2	-	3
5	5	7m	5m	4m	m	-	-	-	0,7	0,4	0,5	0,6	0,3	0,4	50	-	0,3	4,5
6	6	9m	8m	3m	3m	0,8	0,5	0,7	-	-	-	0,9	0,3	0,5	20	-	0,4	1,5
7	7	6m	2m	3m	2m	0,4	0,1	0,2	-	-	-	-	-	-	60	0,15	-	2,5
8	8	4m	2m	m	2m	-	-	-	0,5	0,2	0,3	-	0,4	-	15	-	0,1	4
9	9	7m	5m	3m	3m	0,6	0,3	0,4	-	-	-	0,8	0,5	0,7	20	-	0,4	2
10	10	5m	4m	2m	m	0,9	0,3	0,5	-	-	-	0,7	0,3	0,4	50	0,25	-	1
11	11	8m	5m	3m	2m	-	-	-	0,5	0,1	0,2	0,8	0,4	0,5	30	-	0,3	3,5
12	12	9m	7m	5m	4m	0,8	0,5	0,7	-	-	-	0,4	0,1	0,2	70	0,1	-	2
13	13	6m	3m	2m	m	-	-	-	0,5	0,2	0,3	0,6	0,3	0,4	15	-	0,2	4,5
14	14	7m	5m	4m	2m	0,7	0,3	0,4	-	-	-	-	0,6	-	20	-	0,1	3
15	15	4m	3m	2m	m	0,6	0,2	0,3	-	-	-	0,5	0,1	0,2	60	0,2	-	1,5
16	16	5m	4m	2m	m	-	-	-	0,6	0,3	0,4	0,7	0,4	0,5	30	-	0,3	1
17	17	6m	5m	4m	2m	0,5	0,2	0,3	-	-	-	-	0,4	-	20	-	0,1	2
18	18	4m	m	2m	m	0,8	0,5	0,7	-	-	-	0,4	0,1	0,2	65	0,15	-	1,5
19	19	8m	6m	3m	2m	-	-	-	0,9	0,3	0,5	0,6	0,3	0,4	15	-	0,2	3
20	20	7m	5m	4m	m	0,5	0,1	0,3	-	-	-	0,6	0,3	0,4	45		-	4,5
21	21	9m	8m	3m	3m	0,6	0,2	0,3	-	-	-	0,7	0,3	0,4	30	-	0,3	1,4
22	22	6m	2m	3m	2m	0,9	0,3	0,5	-	-	-	0,5	0,2	0,3	60	0,25	-	2,5
23	23	4m	2m	m	2m	-	-	-	0,4	0,1	0,2	0,5	0,1	0,2	20	-	0,1	4
24	24	7m	5m	3m	3m	0,7	0,3	0,4	-	-	-	0,9	0,3	0,5	15	-	0,3	2
25	25	5m	4m	2m	m	0,5	0,1	0,2	-	-	-	-	-	-	75	0,1	1	1
26	26	8m	5m	3m	2m	-	-	-	0,6	0,3	0,4	-	0,5	-	25	-	0,2	3,5
27	27	9m	7m	5m	4m	0,7	0,4	0,5	-	-	-	0,8	0,5	0,7	30	-	0,3	2
28	28	6m	3m	2m	m	0,4	0,1	0,2	-	-	-	0,6	0,2	0,3	70	0,2	-	4,5
29	29	7m	5m	4m	2m	-	-	-	0,8	0,5	0,7	-	0.6	-	20	-	0,1	3
30	30	4m	3m	2m	m	-	-	-	0,5	0,2	0,3	0,7	0,3	0,4	60	0,15	-	1,5

Решение

По условию задачи в начальный момент времени t_0 =0 система находилась в покое, поэтому T_0 =0. Предположим, что к моменту времени t_1 тело A прошло путь S_A и приобрело скорость V_A .

Изобразим силовую схему варианта задачи (рис.5.4).

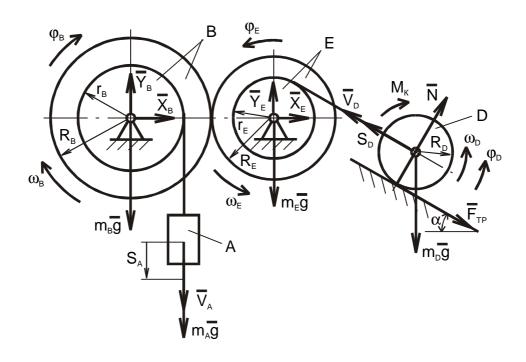


Рис. 5.4

1. Вычислим, в зависимости от V_A , угловые скорости тел $B,\ E,\ D$ и скорость V_D центра масс тела D.

$$\omega_B = \frac{V_A}{r_B} \quad , \qquad \qquad \omega_E = \omega_B \frac{R_B}{R_E} = V_A \frac{R_B}{r_B R_E} \quad ,$$

$$V_D = \omega_E r_E = V_A \frac{R_B r_E}{r_R R_E} \quad , \qquad \qquad \omega_D = \frac{V_D}{R_D} = V_A \frac{R_B r_E}{r_R R_E R_D} \quad .$$

2. Вычислим в зависимости от S_A смещения тел B, E, D.

$$\varphi_B = \frac{S_A}{r_B} \quad , \qquad \varphi_E = S_A \frac{R_B}{r_B R_E} \quad , \quad S_D = S_A \frac{R_B r_E}{r_B R_E} \quad , \quad \varphi_D = S_A \frac{R_B r_E}{r_B R_E R_D} \quad .$$

3. Вычислим кинетическую энергию системы для момента времени t

$$T_1 = T_A + T_B + T_E + T_D$$
 ,

$$T_A = \frac{m_A V_A^2}{2} \quad , \qquad T_B = \frac{I_B \omega_B^2}{2} = \frac{I_B V_A^2}{2 r_B^2} \quad , \qquad T_E = \frac{I_E \omega_E^2}{2} = \frac{I_E V_A^2}{2} \left(\frac{R_B}{r_B R_E}\right)^2 \, ,$$

$$T_D = \frac{m_D V_D^2}{2} + \frac{I_D \omega_D^2}{2} = \frac{m_D V_A^2}{2} \left(\frac{R_B r_E}{r_B R_E}\right)^2 + \frac{I_D V_A^2}{2} \left(\frac{R_B r_E}{r_B R_E R_D}\right)^2 \quad ;$$

$$T = \frac{V_A^2}{2} \left(m_A + \frac{I_B}{r_B^2} + I_E \left(\frac{R_B}{r_B R_E}\right)^2 + m_D \left(\frac{R_B r_E}{r_B R_E}\right)^2 + I_D \left(\frac{R_B r_E}{r_B R_E R_D}\right)^2\right) = \frac{V_A^2}{2} \cdot A \quad ,$$

$$T_D = \frac{M_D V_D^2}{2} + \frac{I_D \omega_D^2}{2} + \frac{I_D \omega$$

4. Подсчитаем сумму работ всех внешних сил, действующих на систему. Работу совершают только силы тяжести тел A и D и момент M_K сил сопротивления качению тела D, $M_K = N \cdot k = m_D g \cos \alpha \cdot k$.

$$\sum_{k} A(\vec{F}_{k}^{e}) = m_{A}gS_{A} - m_{D}g\sin\alpha \cdot S_{D} - m_{D}g\cos\alpha \cdot k \cdot \varphi_{D} =$$

$$= g\left(m_{A}S_{A} - m_{D}\sin\alpha \cdot S_{A}\frac{R_{B}r_{E}}{r_{B}R_{E}} - m_{D}\cos\alpha \cdot k \cdot S_{A}\frac{R_{B}r_{E}}{r_{B}R_{E}R_{D}}\right) =$$

$$= gS_{A}\left(m_{A} - m_{D}\sin\alpha \cdot \frac{R_{B}r_{E}}{r_{B}R_{E}} - m_{D}\cos\alpha \cdot k \cdot \frac{R_{B}r_{E}}{r_{B}R_{E}R_{D}}\right) = S_{A} \cdot B$$

где
$$B = g \left(m_A - m_D \sin \alpha \cdot \frac{R_B r_E}{r_B R_E} - m_D \cos \alpha \cdot k \cdot \frac{R_B r_E}{r_B R_E R_D} \right) = 91,4$$
 (кг·м/c²).

Итак, сумма работ положительна и направление S_A и V_A выбрано верно.

Далее запишем теорему об изменении кинетической энергии для неизменяемой механической системы

$$T - T_0 = \sum_k A(F_k^e) .$$

Подставим выражения для кинетической энергии и суммы работ внешних сил

$$\frac{V_A^2}{2} \cdot A - 0 = S_A \cdot B \quad , \tag{1}$$

откуда

$$V_A = \sqrt{\frac{2 \cdot S_A \cdot B}{A}} \quad .$$

Подставляя числовые значения, получим

$$V_A \approx \sqrt{\frac{2 \cdot 91.4 \cdot S_A}{75}} \approx 1.56$$
 m/c.

Определим ускорение тела A, для чего возьмем производную по времени от правой и левой части соотношения (1), помня, что $S_A = S_A(t)$, $\frac{dS_A}{dt} = V_A$,

$$\frac{dV_A}{dt} = a_A$$

$$\frac{d}{dt}\left(\frac{V_A^2}{2}\cdot A\right) = \frac{d}{dt}\left(S_A\cdot B\right) ,$$

$$\frac{A}{2} \cdot 2V_A \cdot \frac{dV_A}{dt} = B \cdot \frac{dS_A}{dt} \quad ,$$

$$A \cdot V_A a_A = B \cdot V_A \quad .$$

Окончательно

$$a_A = \frac{B}{A} \approx \frac{91.4}{75} \approx 1.21$$
 m/c².

Принцип Даламбера для механической системы

Вертикальный вал вращается с постоянной угловой скоростью ω (рис.6.1). Вал, стержни 1, 2, 3 и точечный груз 4 лежат в одной плоскости и жестко скреплены между собой. Стержни имеют линейные плотности γ_1 , γ_2 , γ_3 и длины l_1 , l_2 , l_3 , масса точечного груза равна m_4 . Определить указанные в таблице параметры конструкции так, чтобы в подпятнике A и подшипнике B не возникало динамических реакций. Исходные данные и определяемые величины приведены в таблице Π -6.

Пример выполнения задания Д-6

Дано: $\gamma_l = 1$ кг/м, $\gamma_2 = 2$ кг/м, $\gamma_3 = 3$ кг/м, $l_1 = 3$ м, $l_2 = 2$ м, $m_4 = 10$ кг, $\alpha = 30$ °.

Определить: z, l_3 (рис.6.2a).

Решение

Динамические реакции в подпятнике A и подшипнике B равны нулю, если главный вектор и главный момент сил инерции равны нулю (при ω =const). В качестве центра приведения возьмем точку θ (рис.6.2б).

Главный вектор сил инерции

$$\vec{F}^{uH} = \vec{F}_{1}^{uH} + \vec{F}_{2}^{uH} + \vec{F}_{3}^{uH} + \vec{F}_{4}^{uH}$$

$$\vec{F}_{i}^{uH} = -m_{i}\vec{a}_{Ci} , \quad (i=1, 2, 3, 4) .$$

$$F_{1}^{uH} = \gamma_{1}l_{1}\omega^{2}\frac{1}{2}l_{1}\sin\alpha = \frac{9}{4}\omega^{2}$$

$$F_{2}^{uH} = \gamma_{2}l_{2}\omega^{2}\left(l_{1}\sin\alpha + \frac{l_{2}}{2}\right) = 10\omega^{2}$$

$$F_{3}^{uH} = \gamma_{3}l_{3}\omega^{2}\frac{l_{3}}{2} = \frac{3}{2}l_{3}^{2}\omega^{2}$$

$$F_{4}^{uH} = m_{4}\omega^{2}l_{3} = 10l_{3}\omega^{2}$$

$$(1)$$

Линии действия сил инерции в данном случае перпендикулярны оси вращения и являются системой параллельных сил. Из равенства нулю главного вектора следует алгебраическое уравнение

$$F_1^{uh} + F_2^{uh} - F_3^{uh} - F_4^{uh} = 0 . (2)$$

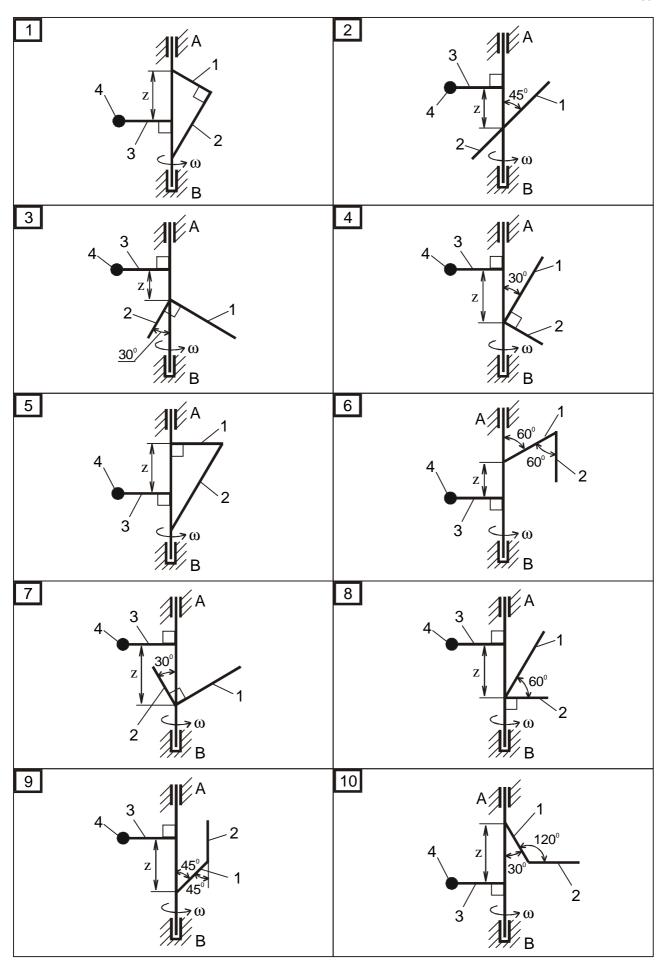


Рис. 6.1

Таблица Д-6

№ ва-	No	γ_{l} ,	γ_2 ,	γ_3 ,	m_4 ,	l_1 ,	l_2 ,	l_3 ,	Найти
рианта	рис.	кг/м	кг/м	кг/м	ΚΓ	M	M	M	
1	1	1	5	0	10	1	6	-	z , l_3
2	2	8	12	7	-	3	4	2	z, m_4
3	3	12	4	-	10	9	3	2	z, y ₃
4	4	1	6	0	10	6	1	-	z, l_3
5	5	10	11	7	-	5	3	2	z, m_4
6	6	5	6	-	10	6	2	3	z, \(\gamma_3 \)
7	7	9	3	2	0	9	3	-	z, l_3
8	8	5	2	3	-	2	5	3	z, m_4
9	9	11	8	-	10	2	5	10	z, y ₃
10	10	1	7	10	10	1	7	-	z, l_3
11	1	2	6	1	-	2	5	3	z, m_4
12	2	6	10	-	10	6	3	2	z, y ₃
13	3	6	8	0	10	7	1	-	z, l_3
14	4	2	12	2	-	2	2	3	z, m_4
15	5	12	1	-	10	6	3	2	z, Y3
16	6	3	4	12	0	3	2	-	z, l_3
17	7	11	5	3	-	11	5	3	z, m_4
18	8	6	1	-	10	1	6	2	z, Y3
19	9	12	7	10	10	1	6	-	z, l_3
20	10	3	9	10	-	3	9	10	z, m_4
21	1	4	8	-	0	4	3	2	z, \(\gamma_3 \)
22	2	7	11	6	10	7	2	-	z, l_3
23	3	11	3	10	-	1	2	2	z, m_4
24	4	3	11	-	0	3	3	1	z, \(\gamma_3 \)
25	5	9	10	6	10	4	2	-	z, l_3
26	6	2	3	11	-	6	5	2	z, m_4
27	7	12	6	-	10	12	6	2	z, \(\gamma_3 \)
28	8	3	4	2	0	4	3	-	z, l_3
29	9	10	9	10	-	3	4	10	z, m_4
30	10	2	6	-	10	2	8	10	z, \(\gamma_3 \)

Подставим (1) в (2), получим:

$$\gamma_1 l_1^2 \sin \alpha + \gamma_2 l_2 (2l_1 \sin \alpha + l_2) - 3\gamma_3 l_3^2 - 2m_4 l_3 = 0$$

или
$$3l_3^2 + 20l_3 - \frac{49}{2} = 0 \quad . \tag{3}$$

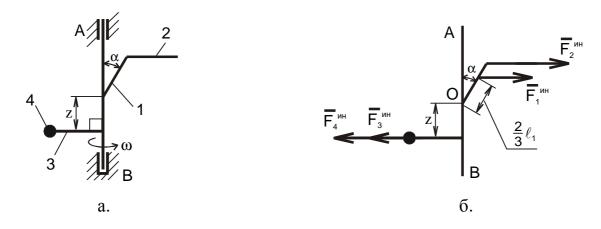


Рис. 6.2

Решая квадратное уравнение (3), найдем длину стержня

$$l_3 = 1,06 \text{ M}$$
 $(l_3 > 0)$.

Найдем главный момент сил инерции относительно точки O

$$\vec{M}_O(\vec{F}^{uh}) = \sum_{k=1}^4 \vec{M}_O(\vec{F}_k^{uh}) .$$

Вычислим модули моментов сил инерции

$$M_{O}(\vec{F}_{1}^{uh}) = F_{1}^{uh} \frac{2}{3} l_{1} \cos \alpha = \frac{9\sqrt{3}}{4} \omega^{2}$$

$$M_{O}(\vec{F}_{2}^{uh}) = F_{2}^{uh} l_{1} \cos \alpha = 15\sqrt{3}\omega^{2}$$

$$M_{O}(\vec{F}_{3}^{uh}) = F_{3}^{uh} z = \frac{3}{2} (1,06)^{2} \omega^{2} z$$

$$M_{O}(\vec{F}_{4}^{uh}) = F_{4}^{uh} z = 10,6 \cdot \omega^{2} z$$

$$(4)$$

Система сил инерции лежит в одной плоскости. Из равенства нулю главного момента следует алгебраическое выражение:

$$-M_{O}(\vec{F}_{1}^{uh}) - M_{O}(\vec{F}_{2}^{uh}) - M_{O}(\vec{F}_{3}^{uh}) - M_{O}(\vec{F}_{4}^{uh}) = 0 \quad . \tag{5}$$

Подставим (4) в (5), получим:

$$\left[\gamma_1 l_1^3 \frac{2}{3} \sin \alpha + \gamma_2 l_2^2 \left(1 + 2 \frac{l_1}{l_2} \sin \alpha \right) \right] \cos \alpha + z \left(\gamma_3 l_3^2 + 2 m_4 l_3 \right) = 0 ,$$

$$z = -\frac{\left[\gamma_1 l_1^3 \frac{2}{3} \sin \alpha + \gamma_2 l_2^2 \left(1 + 2 \frac{l_1}{l_2} \sin \alpha\right)\right] \cos \alpha}{\gamma_3 l_3^2 + 2 m_4 l_3} = -2,46 \quad \text{M} \ .$$

Следовательно, стержень 3 длиной 1,06 (м) и груз 4 должны находиться выше точки 0 на расстоянии равном 2,46 (м).

Принцип возможных перемещений

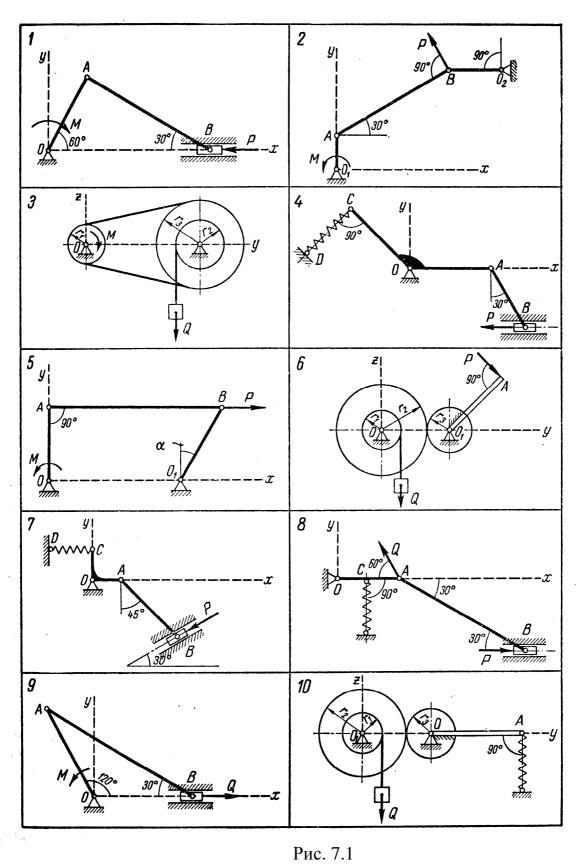
Механизмы (рис.7.1-7.3) в заданном положении находятся в равновесии. Необходимо определить величину, указанную в предпоследней графе таблицы Д-7.1, применяя принцип возможных перемещений и пренебрегая силами трения. Все необходимые для решения данные приведены в таблице Д-7.1.

Примечание: механизмы в вариантах 3, 6, 10, 14, 16, 18, 19, 25 и 30 расположены в вертикальной плоскости, а остальные - в горизонтальной.

Пример выполнения задания Д-7

В механизме (рис.7.4) груз A может опускаться вертикально вниз и посредством нерастяжимой нити, намотанной на блок B, привести во вращательное движение блок B и находящийся с ним в зацеплении шкив C. Со шкивом C жестко скреплен кривошип O_1D , который может привести в движение шарнирно соединенный с ним шатун DE. Шатун DE, в свою очередь, может привести в движение по горизонтальной прямой ползун E, к которому прикреплена пружина. Второй конец пружины прикреплен к неподвижной опоре. Необходимо определить при равновесии механизма величину сжатия пружины h, применив принцип возможных перемещений. При этом заданными величинами являются : вес груза A P_A =100 H; коэффициент жесткости пружины c=5 H/cм; радиусы r_B =20 см, R_B =40 см; углы α =30° и β =90°. Вес кривошипа O_1D и шатуна DE не учитывать, силами трения пренебречь.

Решение


Механическая система, состоящая из пяти тел (груз A, блок B, шкив C, жестко скрепленный с кривошипом O_1D , шатун DE и ползун E), находится в равновесии в указанном на рис. 7.4 положении.

Связи в механизме не имеют сил трения, а поэтому являются идеальными.

1. Применим к данной механической системе принцип возможных перемещений:

$$\sum_{k=1}^{n} \delta A(\vec{F}_k^a) = 0 \quad , \tag{1}$$

где $\sum_{k=1}^n \delta\!\!A\!\!\left(\vec{F}_k^{\ a}\right)$ - сумма элементарных работ активных сил на любом возможном перемещении системы.

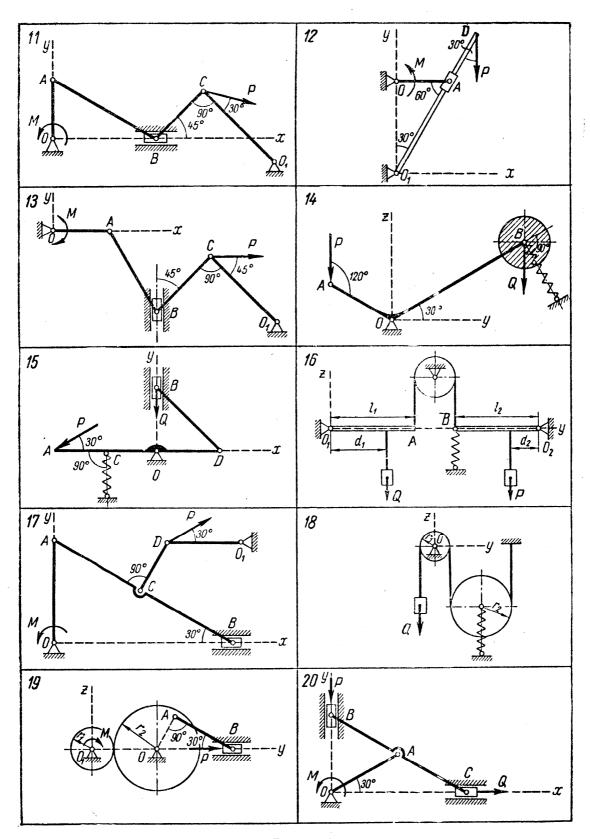
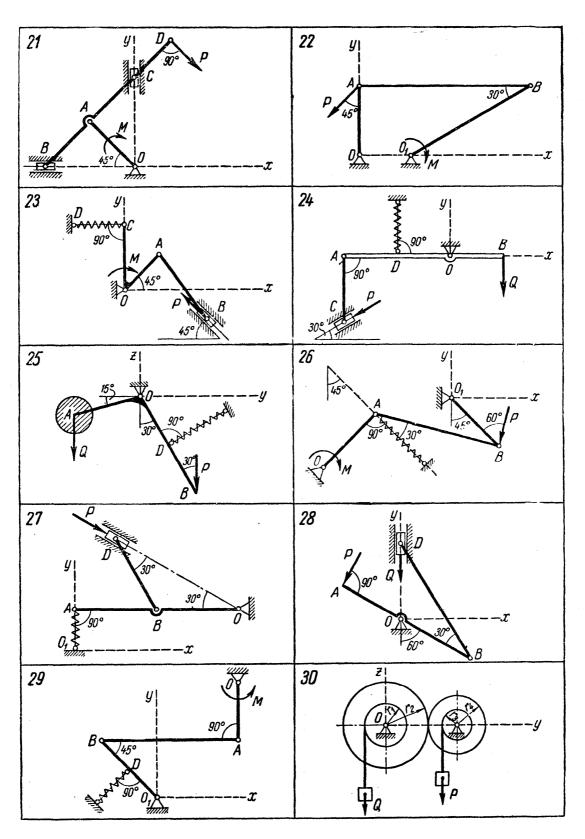


Рис. 7.2



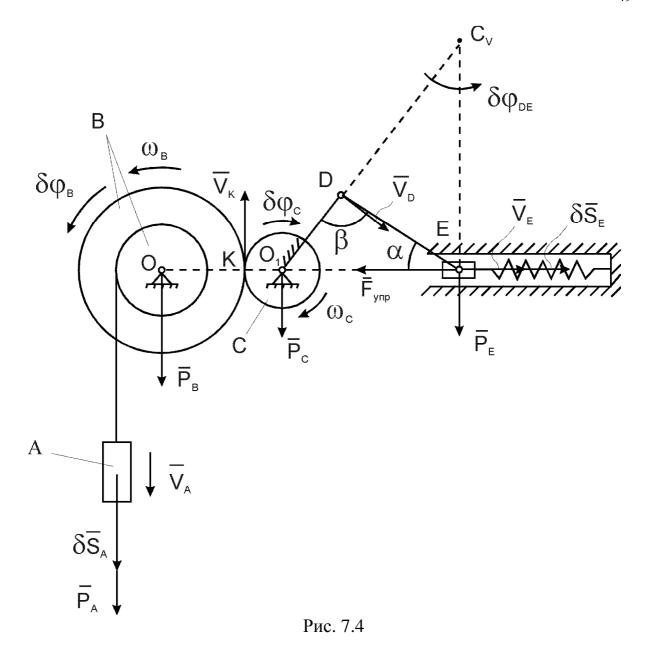

Рис. 7.3

Таблица Д-7.1

								таолица д-7.1
№ ва-	Линейные	Сила	Сила	Момент	Жесткость	Деформация	Опреде-	Примечания
рианта	размеры, см	Q,H	Р,Н	М, Н.м	пружины с	пружины	ЛИТЬ	
					, Н/см	h, см		
1	OA=10	-	ı	20	-	-	P	-
2	$O_1A=20$	-	100	-	-	-	M	-
3	$r_1=20; r_2=30; r_3=40$	-	-	100	-	-	Q	-
4	OC:OA=4:5	-	200	-	-	4	С	-
5	OA=100	-	-	10	-	-	P	-
6	$r_1=15; r_2=50; r_3=20;$	200	-	-	-	-	P	O_1A - невесомый
	$O_1A = 80$							
7	OC=OA	-	-	-	10	3	P	Пружина
8	OC=AC	-	200	-	10	2	Q	сжата
9	OA=20	200	-	-	-	-	M	OA -
10	$r_1=15; r_2=40; r_3=20;$	2.10^{3}	-	-	-	4	c	невесомый
	OA=100							
11	OA=20	-	-	300	-	-	P	-
12	O ₁ D=60; AO=20	-	-	100	-	-	P	-
13	OA=40	-	-	200	-	-	P	-
14	OB=2 OA	20	-	-	25	3	P	ОА,ОВ-невесомые,
								пружина растянута
15	AC=OC=OD	3.10^{3}	-	-	250	3	P	Пружина сжата
16	$d_1=80; d_2=25; l_1=100;$	5.10^{3}	-	-	100	4	P	О ₁ А и О ₂ В -
	$l_2 = 75$							невесомые,
								пружина растянута

Продолжение таблицы Д-7.1

№ ва-	Линейные	Сила	Сила Сила Мо		Жесткость	Деформация	Опреде-	Примечания
рианта	размеры, см	Q,H	P , H	М, Н.м	пружины с	пружины	лить	
					, Н/см	h, см		
17	OA=20	-	-	200	-	-	P	-
18	1	200	200	1	100	-	h	Р-вес блока r ₂
19	$r_1=20$; $r_2=30$; OA=25	-	-	100	-	-	P	AB - невесомый
20	OA=AB=AC=50	50	100	-	-	-	M	-
21	OA=AB=AC=	-	200	-	-	-	M	-
	=DC=25							
22	OA=40	-	-	400	-	-	P	-
23	OC=2 OA=100	-	200	50	50	-	h	-
24	AD=OD=OB	-	250	1	150	2,5	Q	Пружина сжата
25	OD=DB=0.8 AO	400	-	-	120	3	P	АО и ВО -
								невесомые,
								пружина растянута
26	OA=25	-	500	120	-	2	c	Пружина
								растянута
27	OB=AB	-	-	-	180	2	P	-
28	OB=1,25 OA	-	450	-	-	-	Q	-
29	$BD=O_1D; AO=30$	-	_	120	100	-	h	-
30	$r_1=15$; $r_2=36$; $r_3=10$;	-	600	-	-	-	Q	-
	$r_4 = 20$							

- 2. Изобразим на рисунке действующие на систему активные силы: силы тяжести тел \vec{P}_A , \vec{P}_B , \vec{P}_C , \vec{P}_E (вес тел O_ID и DE по условию задачи не учитываем) и силу упругости пружины \vec{F}_{yn} , учитывая при этом, что пружина в указанном положении механизма сжата.
- 3.Так как рассматриваемая механическая система имеет одну степень свободы, ей можно сообщить два независимых возможных перемещения движения груза A вверх или вниз. Дадим грузу A возможное перемещение $\delta \vec{S}_A$, направленное вниз. Этому возможному перемещению будут соответствовать: поворот блока B вокруг неподвижного цента O на угол $\delta \varphi_B$; поворот тела C вместе со стержнем O_ID вокруг неподвижного центра O_I на угол $\delta \varphi_C$, поворот шатуна DE вокруг мгновенного центра скоростей C_v на угол $\delta \varphi_{DE}$, а также перемещение $\delta \vec{S}_E$ ползуна E.

4. Найдем сумму элементарных работ активных сил на соответствующих возможных перемещениях их точек приложения. Элементарная работа сил тяжести \vec{P}_B и \vec{P}_C равна нулю, так как точки их приложения неподвижны. Элементарная работа силы тяжести \vec{P}_E равна нулю, так как точка ее приложения получила возможное перемещение $\delta \vec{S}_E$ по горизонтали. Следовательно, элементарную работу на возможном перемещении производят лишь две силы: сила тяжести \vec{P}_A груза A и сила упругости пружины \vec{F}_{yn} :

$$\delta A(\vec{P}_A) = P_A \delta S_A
\delta A(\vec{F}_{yn}) = -F_{yn} \delta S_E$$
(2)

При этом величина силы упругости пружины будет равна

$$\left|\vec{F}_{yn}\right| = ch \quad , \tag{3}$$

где c - коэффициент жесткости пружины,

h - величина сжатия пружины.

Таким образом, на основании (2) с учетом (3) найдем сумму элементарных работ активных сил на возможном перемещении системы:

$$\sum_{k=1}^{n} \delta A(\vec{F}_k^a) = P_A \delta S_A - ch \cdot \delta S_E$$
 (4)

5. Подставляя (4) в уравнение (1), получим

$$P_A \delta S_A - ch \cdot \delta S_E = 0 \quad . \tag{5}$$

Из уравнения (5) находим:

$$h = \frac{P_A}{c} \cdot \frac{\delta S_A}{\delta S_E} \qquad . \tag{6}$$

Как следует из равенства (6) для окончательного решения задачи необходимо установить зависимость между возможными перемещениями \mathcal{S}_A и \mathcal{S}_E . Это можно осуществить различными способами. Приведем один из них. На рассматриваемую механическую систему наложены стационарные связи. При этом элементарные действительные перемещения принадлежат к числу возможных перемещений и , следовательно, зависимости между возможными перемещениями должны быть такими же, как и между соответствующими скоростями, то есть:

$$\frac{\partial S_A}{\partial S_E} = \frac{V_A}{V_E} \quad , \tag{7}$$

где - $\frac{V_A}{V_E}$ отношение между скоростями груза A и ползуна E, которое

имело бы место в данном положении механизма при его движении.

Подставляя (7) в равенство (6), получим:

$$h = \frac{P_A}{c} \cdot \frac{V_A}{V_E} \quad . \tag{8}$$

Как следует из равенства (8), для окончательного решения задачи необходимо найти отношение скоростей $\frac{V_A}{V_F}$, то есть необходимо решить задачу кинематики для рассматриваемого механизма.

Результаты решения задачи кинематики (зависимости скоростями звеньев механизма и отдельных его точек) для наглядности представим в виде таблицы Д-7.2.

Таблица Д-7.2

Наименование звена или точки	Скорость
груз А	V_A
блок В	$\omega_B = \frac{V_A}{r_B}$
точка К	$V_K = \omega_B R_B = \frac{V_A}{r_B} \cdot R_B$
шкив C и кривошип O_ID	$\omega_C = \omega_{O_1D} = \frac{V_K}{r_C} = \frac{V_A R_B}{r_B r_C}$
точка D	$V_D = \omega_{O_1D} \cdot O_1D = \frac{V_A R_B l}{r_B r_C}$
шатун <i>DE</i>	$\frac{V_D}{V_E} = \frac{DC_V}{EC_V} = \cos 30^\circ$ $\frac{V_A R_B l}{V_E r_B r_C} = \cos 30^\circ$

Таким образом, как следует из последней строки данной таблицы, будет справедливо следующее соотношение

$$\frac{V_A}{V_E} = \frac{r_B r_C \cos 30^\circ}{R_B l} \qquad . \tag{9}$$

Подставляя (9) в (8) получим:
$$h = \frac{P_A}{c} \cdot \frac{r_B r_C \cos 30^\circ}{R_B l} = \frac{100 \cdot 20 \cdot 10 \cdot 0,867}{5 \cdot 40 \cdot 50} = 1,74 \text{ см} , \qquad (10)$$

то есть найдем искомую величину сжатия пружины.

Общее уравнение динамики

Механическая система, состоящая из груза 1 весом P_1 , блоков 2 и 3 весом P_2 и P_3 соответственно и сплошного катка 4 весом P_4 , движется под действием сил тяжести. Радиус инерции блоков 2 и 3 - ρ_2 и ρ_3 . Если в таблице радиус инерции блока не указан, блок следует считать полым цилиндром. Каток 4 движется по рельсу, наклоненному к горизонту под углом α без скольжения. Коэффициент трения качения k. Трением в осях пренебречь, проскальзывание невесомых нерастяжимых нитей отсутствует. С помощью общего уравнения динамики определить ускорение оси катка. Схемы механизмов приведены на рис. 8.1, 8.2, данные — в таблице Д-8.1.

Пример выполнения задания Д-8

Механическая система, представленная на рис. 8.3, движется под действием сил тяжести.

Дано: P_1 =3 кH, P_2 =2 кH, P_3 =2 кH, P_4 =2 кH, α =30°, R_2 =0,4 м, r_2 =0,2 м, ρ_2 =0,3 м, r_4 =0,5 м, k=0,3 см.

Определить ускорение оси катка.

Решение

- 1. Разобравшись в работе системы (рис.8.3) и выбрав направление вектора ускорения \vec{a}_C , изобразим на рисунке активные силы, реакции неидеальной связи в точке контакта катка с рельсом, линейные и угловые ускорения тел, главные векторы и главные моменты сил инерции.
- 2. Так как система имеет одну степень свободы, то задаваясь возможным перемещением δS_C , скоростью V_C и ускорением a_C точки C, выразим все остальные перемещения, необходимые для решения задачи, через δS_C , V_C и a_C . Решение задачи кинематики для наглядности представим в виде таблицы Д-8.2.

Вычислим модули всех сил инерции и модули моментов сил инерции.

$$\begin{split} F_1^{\,\,\mathit{IIH}} &= \frac{P_1}{g} \, a_1 = \frac{P_1}{g} \cdot \frac{2a_C R_2}{r_2} \quad , \qquad F_2^{\,\,\mathit{IIH}} = F_3^{\,\,\mathit{IIH}} = 0 \quad , \qquad F_4^{\,\,\mathit{IIH}} = \frac{P_4}{g} \, a_C \quad . \\ \\ M_1^{\,\,\mathit{IIH}} &= 0 \quad , \qquad M_2^{\,\,\mathit{IIH}} = \frac{P_2}{g} \, \rho_2^2 \varepsilon_2 = \frac{P_2}{g} \, \rho_2^2 \frac{2a_C}{r_2} \quad , \\ \\ M_3^{\,\,\mathit{IIH}} &= \frac{P_3}{g} \, r_3^2 \varepsilon_3 = \frac{P_3}{g} \, r_3^2 \, \frac{2a_C}{r_3} \quad , \qquad M_4^{\,\,\mathit{IIH}} = \frac{P_4 \, r_4^2}{2g} \, \varepsilon_4 = \frac{P_3 \, r_4^2}{2g} \cdot \frac{a_C}{r_4} \quad . \end{split}$$

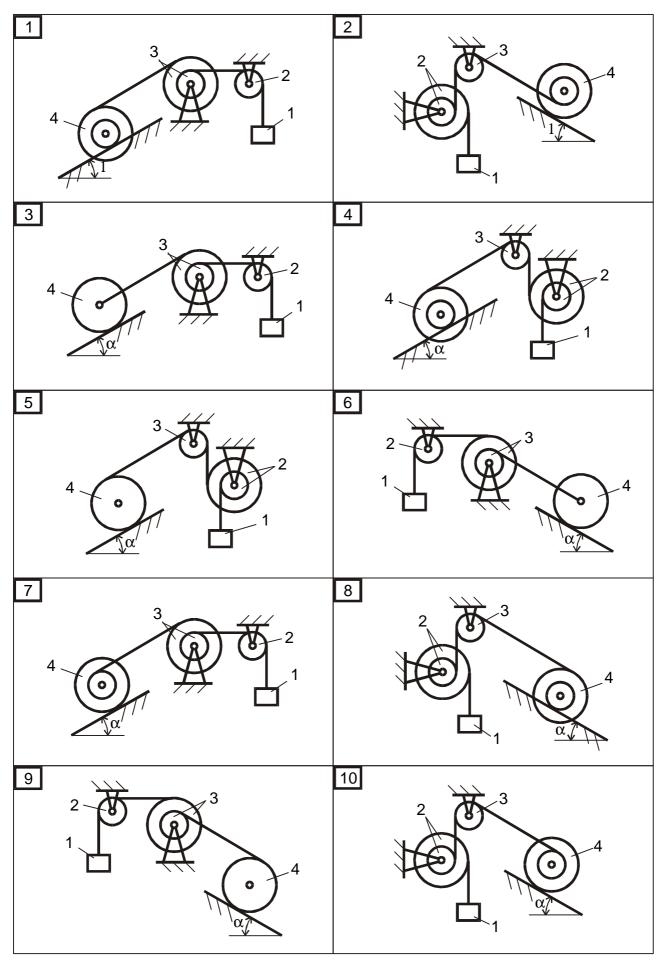


Рис. 8.1

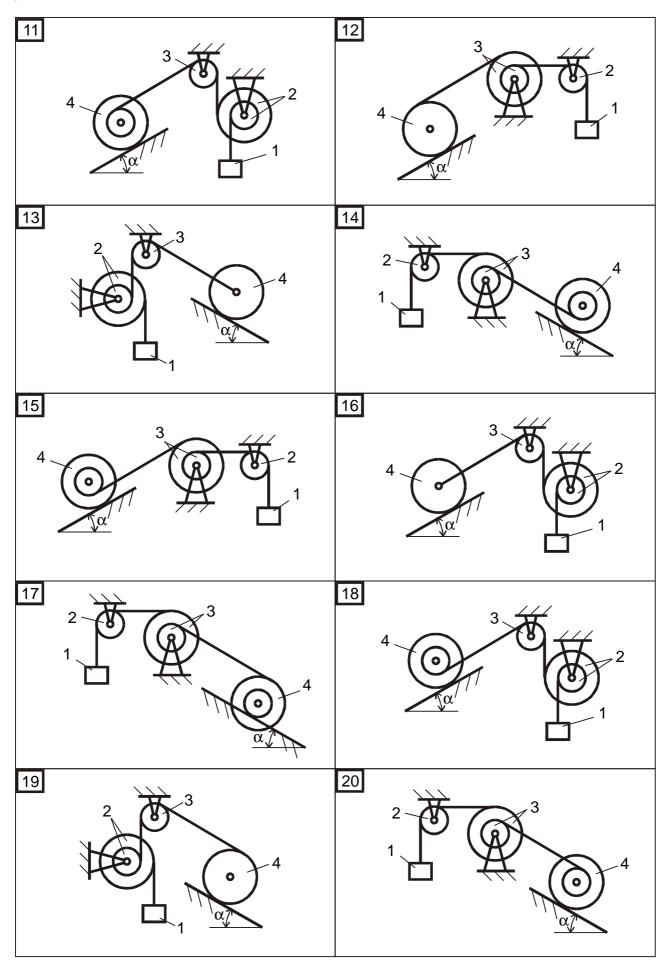


Рис. 8.2

Таблица Д-8.

															1 4031	<u>ица д-о</u> .
№ вари-	№ ри-	P_{1} ,	P_2 ,	P_3 ,	P_4 ,	α, °	R_2 ,	r_2 ,	ρ_2 ,	R_3 ,	r_3 ,	ρ_3 ,	R_4 ,	$ ho_4$,	r_4 ,	k,
анта	сунка	кН	кН	кН	кН		M	M	M	M	M	M	M	M	M	СМ
1	1	1	0,5	1	1	10	-	-	-	0,5	0,3	0,4	0,6	0,5	0,3	0,3
2	2	3	2	2	2	20	0,5	0,3	0,4	-	-	-	0,8	0,7	0,5	0,3
3	3	5	5	3	4	20	-	-	-	0,6	0,5	0,3	-	-	0,7	0,3
4	4	2	1,5	1	2	20	-	-	-	0,4	0,2	0,3	1	0,9	0,8	0,4
5	5	4	3	2	3,5	15	0,5	0,3	0,4	-	-	-	-	-	0,6	0,4
6	6	1	2	1	0,5	15	-	-	-	0,4	0,2	0,3	-	-	0,2	0,5
7	7	3	3	1	2	15	-	-	-	0,3	0,1	0,2	0,9	0,7	0,6	0,5
8	8	1	1,5	2	1	10	-	-	-	0,9	0,6	0,8	0,5	0,4	0,2	0,3
9	9	2	2,5	3	0,5	20	-	-	-	0,4	0,1	0,2	-	-	0,5	0,3
10	10	4	3,5	5	2,5	20	0,8	0,5	0,7	-	-	-	0,8	0,7	0,6	0,3
11	11	1	2	1	0,5	10	0,6	0,4	0,5	-	-	-	0,5	0,2	0,1	0,4
12	12	2	1	0,5	1,5	15	-	-	-	0,8	0,5	0,7	-	-	0,2	0,4
13	13	3	2	1	2,5	20	0,9	0,6	0,8	-	-	-	-	-	0,3	0,4
14	14	4	1	2	3	15	0,5	0,3	0,4	-	-	-	0,7	0,5	0,4	0,4
15	15	5	4	2	4,5	10	-	-	-	0,9	0,6	0,8	0,8	0,6	0,5	0,4
16	16	1	1,5	2	1	20	0,4	0,2	0,3	-	-	-	-	-	0,1	0,5
17	17	2	2	3	1,5	10	-	-	-	0,4	0,1	0,2	0,4	0,3	0,2	0,5
18	18	3	2,5	3	2,5	10	0,8	0,5	0,7	-	-	-	0,8	0,6	0,5	0,5
19	19	4	3,5	4	3,5	15	0,9	0,5	0,6	-	-	-	-	-	0,7	0,5
20	20	5	4,5	3	4,5	20	-	-	-	0,4	0,1	0,2	0,4	0,3	0,2	0,5
21	1	2	1,5	1,6	1,5	15	-	-	-	0,3	0,1	0,2	0,7	0,6	0,4	0,3
22	2	4	3	2,5	3	25	0,6	0,4	0,5	-	-	-	0,9	0,8	0,6	0,3
23	3	1	1	0,5	1	15	-	-	-	0,4	0,1	0,2	-	-	1	0,4
24	4	3	2	1,5	2,5	20	-	-	-	0,3	0,1	0,2	1,5	1,3	1,2	0,4
25	5	5	6	2,4	4	10	0,8	0,5	0,7	-	-	-	-	-	0,5	0,4
26	6	2	3	0,5	1	20	-	-	-	0,6	0,4	0,5	-	-	0,4	0,5
27	7	4	2	2	4	10	-	-	-	0,5	0,3	0,4	1	0,9	0,8	0,5
28	8	5	4	2,5	5	10	-	-	-	0,8	0,5	0,7	1,4	1,1	1	0,5
29	9	3	3	4	2	15	-	-	-	0,5	0,2	0,4	-	-	0,4	0,3
30	10	5	4	6	3	20	0,3	0,1	0,2	-	-	-	1	0,9	0,8	0,3

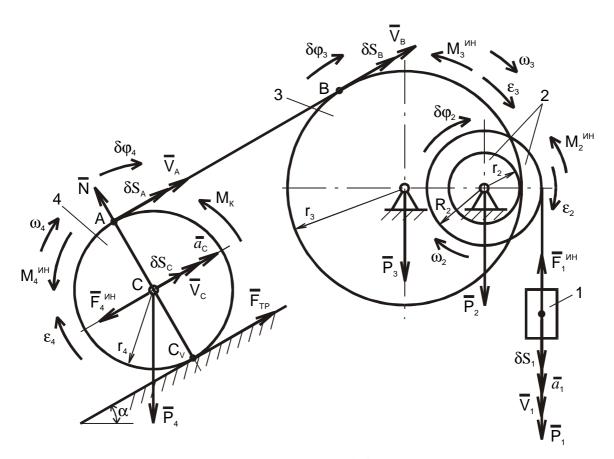


Рис. 8.3

Таблица Д-8.2

		таолица д о
Ускорение	Скорость	Возможное перемещение
$\mathcal{E}_4 = \frac{a_C}{r_4}$	$\omega_4 = \frac{V_C}{r_4}$	$\delta \varphi_4 = \frac{\delta S_C}{r_4}$
$\varepsilon_3 = \frac{2a_C}{r_3}$	$\omega_3 = \frac{V_B}{r_3} = \frac{2V_C}{r_3}$	$\delta \varphi_3 = \frac{2\delta S_C}{r_3}$
$\varepsilon_2 = \frac{2a_C}{r_2}$	$\omega_2 = \frac{r_3}{r_2} \omega_3 = \frac{2V_C}{r_2}$	$\delta \varphi_2 = \frac{2\delta S_C}{r_2}$
$a_1 = \frac{2a_C R_2}{r_2}$	$V_1 = R_2 \omega_2 = \frac{2V_C R_2}{r_2}$	$\delta S_1 = \frac{2\delta S_C R_2}{r_2}$

Момент трения качения

$$M_K = k \cdot N = k \cdot P_4 \cos \alpha .$$

Запишем общее уравнение динамики в общем виде:

$$\begin{split} P_1 \delta\!S_1 &- F_1^{\ NH} \delta\!S_1 - M_2^{\ NH} \delta\!\varphi_2 - M_3^{\ NH} \delta\!\varphi_3 - P_4 \sin\alpha \cdot \delta\!S_C - \\ &- F_4^{\ NH} \delta\!S_C - M_4^{\ NH} \delta\!\varphi_4 - M_K \delta\!\varphi_4 = 0 \quad . \end{split}$$

Подставим значения сил и моментов инерции выраженные через a_C и линейные и угловые перемещения выраженные через δS_C . Вынесем δS_C из всех слагаемых за скобку, получим:

$$\delta S_{C} \left[P_{1} \frac{2R_{2}}{r_{2}} - \frac{P_{1}}{g} \cdot \frac{2a_{C}R_{2}}{r_{2}} \cdot \frac{2R_{2}}{r_{2}} - \frac{P_{2}}{g} \rho_{2}^{2} \frac{2a_{C}}{r_{2}} \cdot \frac{2}{r_{2}} - \frac{P_{3}}{g} r_{3} 2a_{C} \frac{2}{r_{3}} - \right.$$

$$\left. - P_{4} \sin \alpha - \frac{P_{4}}{g} a_{C} - \frac{P_{4}}{2g} \cdot \frac{r_{4}a_{C}}{r_{4}} - P_{4} \cos \alpha \cdot \frac{k}{r_{4}} \right] = 0 .$$

Так как $\delta S_C \neq 0$, то выражение в скобках должно быть равно нулю. Отсюда получим

$$a_{C} = \frac{2P_{1}\frac{R_{2}}{r_{2}} - P_{4}\left(\sin\alpha - \frac{k}{r_{4}}\cos\alpha\right)g}{4\left(P_{1}\left(\frac{R_{2}}{r_{2}}\right)^{2} + P_{2}\left(\frac{\rho_{2}}{r_{2}}\right)^{2} + P_{3} + \frac{3}{2}P_{4}\right)}.$$

Далее подставим числовые данные и вычислим значение a_C

$$a_C = \frac{2 \cdot 3 \frac{0.4}{0.2} - 2 \left(\sin 30^\circ - \frac{0.03}{0.5} \cos 30^\circ \right) 10}{4 \left(3 \left(\frac{0.4}{0.2} \right)^2 + 2 \left(\frac{0.3}{0.2} \right)^2 + 2 + \frac{3}{2} \cdot 2 \right)} = 0.015 \quad \text{m/c}^2 \; .$$

Уравнения Лагранжа II рода

Для заданной механической системы на основе уравнений Лагранжа II рода составить дифференциальные уравнения движения. Необходимые данные и рекомендуемые обобщенные координаты приведены в таблице Д-9.

При решении задачи массами нитей пренебречь. Считать, что качение происходит без проскальзывания. Блоки и катки, для которых в таблице радиусы инерции не указаны, считать сплошными однородными цилиндрами. Силы сопротивления в подшипниках не учитывать. Заданные силы P и моменты пар M считать постоянными величинами.

Пример выполнения задания

Механическая система (рис. 9.2а), состоящая из грузов 1, 2, 3 массами m_1 , m_2 , m_3 соответственно, подвижного блока 4 массой m_4 и неподвижного блока 5 массой m_5 движется под действием сил тяжести. Коэффициент трения скольжения между грузом 2 и плоскостью равен f. Силы сопротивления в подшипниках не учитывать. Блоки 4 и 5 считать сплошными однородными цилиндрами. Найти дифференциальные уравнения движения механической системы.

Решение

Для выполнения задания используем уравнения Лагранжа II рода. Поскольку механическая система имеет две степени свободы, должна получиться система из двух дифференциальных уравнений

$$\begin{cases}
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_1} \right) - \frac{\partial T}{\partial q_1} = Q_1 \\
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_2} \right) - \frac{\partial T}{\partial q_2} = Q_2
\end{cases}$$
(1)

Выберем координату x в качестве обобщенной координаты q_1 , а координату ξ в качестве обобщенной координаты q_2 .

1. Найдем кинетическую энергию механической системы. Грузы 1, 2 и 3 движутся поступательно, блок 5 вращается вокруг неподвижной оси, а подвижный блок 4 находится в плоскопараллельном движении. Изобразим на рисунке вектора скоростей тел системы (рис. 9.2б) и запишем выражение кинетической энергии

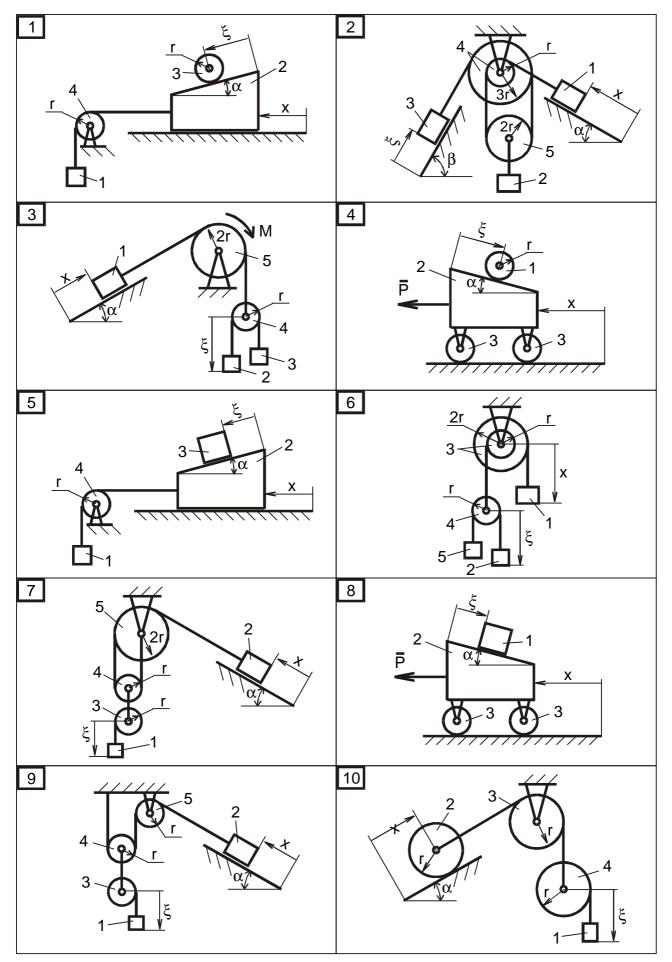


Рис. 9.1

Таблица Д-9

								1			1				т аолица д-у
№ ва-	№ ри-	m_1	m_2	m_3	m_4	m_5	P	M	f	k	q_{I}	q_2	ρ	α	Дополнительные указания
рианта	сунка														
1	1	m_1	m_2	m_3	0	-	-	-	f	0	х	ع	-	α	<i>f</i> - для тела 2
2	2	m_1	m_2	m_3	m_4	0	-	-	f	-	х	ع	3r	-	<i>f</i> - для тела 3, <i>Q</i> - для тела 4
3	3	m_1	m_2	m_3	m_4	m_5	-	M	0	-	х	ع	-	α	
4	4	m_1	m_2	m_3	-	-	P	-	-	k	х	ع	-	α	<i>k</i> - для тела 3
5	5	m_1	m_2	m_3	m_4	-	-	-	f	-	х	ع	-	0	f - для тела 2
6	6	m_1	m_2	m_3	m_4	m_5	-	-	-	-	х	ع	2r	-	р - радиус инерции тела 3
7	7	m_1	m_2	m_3	m_4	m_5	-	-	0	-	х	ع	-	α	
8	8	m_1	m_2	m_3	-	1	P	-	0	k	х	ع	-	α	<i>k</i> - для тела 3
9	9	m_1	m_2	m_3	m_4	0	-	-	f	-	х	ع	-	α	f - для тела 2
10	10	m_1	m_2	0	m_4	-	-	-	-	k	х	ع	-	α	<i>k</i> - для тела 2
11	1	m_1	m_2	m_3	0	-	-	-	0	k	х	ع	-	α	<i>k</i> - для тела 3
12	2	m_1	m_2	m_3	m_4	0	-	-	f	-	х	ع	2r	-	f - для тела 1, ρ - для тела 4
13	3	m_1	m_2	m_3	m_4	m_5	-	M	f	_	х	ع	-	0	f - для тела 1
14	4	m_1	m_2	m_3	-	1	P	-	-	k	х	ع	-	α	<i>k</i> - для тела 1
15	5	m_1	m_2	m_3	m_4	-	-	-	0	-	х	ع	-	α	
16	6	m_1	m_2	m_3	m_4	m_5	-	-	-	-	х	ع	r	-	р - радиус инерции тела 3
17	7	m_1	m_2	m_3	m_4	m_5	-	-	f	-	х	ع	-	0	<i>f</i> - для тела 2
18	8	m_1	m_2	m_3	-	1	P	-	f	0	х	ع	-	α	<i>f</i> - для тела 1
19	9	m_1	m_2	m_3	m_4	m_5	ı	-	0	-	X	ع	-	α	
20	10	m_1	m_2	m_3	m_4	1	-	-	-	0	х	ع	-	α	
21	1	m_1	m_2	m_3	m_4	-	-	-	f	k	х	ع	-	0	<i>f</i> - для тела 2, <i>k</i> - для тела 3
22	2	m_1	m_2	m_3	m_4	m_5	ı	-	-	-	X	بح	r	-	ρ - радиус инерции тела 4
23	3	m_1	m_2	m_3	m_4	m_5	-	M	f	-	х	ع	-	α	<i>f</i> - для тела 1
24	4	m_1	m_2	m_3	ı	ı	P	-	-	k	X	ع	-	0	<i>k</i> - для тела 1
25	5	m_1	m_2	m_3	m_4	ı	ı	-	f	-	X	ع	-	α	f- для тела 3
26	6	m_1	m_2	m_3	m_4	m_5	-	-	-	-	х	ع	3r	-	р - радиус инерции тела 3
27	7	m_1	m_2	m_3	m_4	m_5	1	-	\overline{f}	-	х	ع	-	α	f - для тела 2
28	8	m_1	m_2	m_3	-	-	P	-	\overline{f}	k	х	ξ	-	0	f - для тела 1, k - для тела 3
29	9	m_1	m_2	m_3	m_4	m_5	1	-	\overline{f}	-	х	ع	-	0	<i>f</i> - для тела 2
30	10	m_1	m_2	m_3	m_4	-	-	-	-	k	х	ع	-	0	<i>k</i> - для тела 2

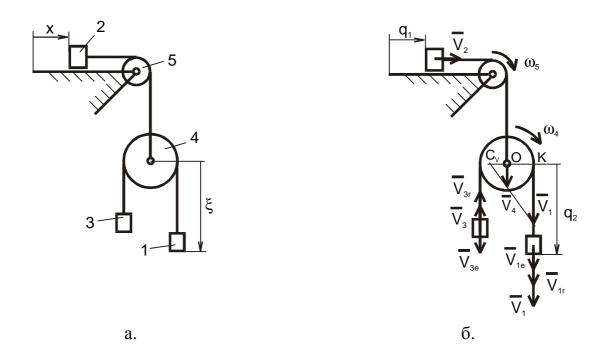


Рис. 9.2

$$T = \frac{m_2 V_2^2}{2} + \frac{I_5 \omega_5^2}{2} + \frac{m_4 V_4^2}{2} + \frac{I_4 \omega_4^2}{2} + \frac{m_3 V_3^2}{2} + \frac{m_1 V_1^2}{2} \quad .$$

Выразим скорости тел через производные обобщенных координат

$$V_2 = \dot{q}_1$$
 , $\omega_5 = \frac{V_2}{r_5} = \frac{\dot{q}_1}{r_5}$, $V_4 = V_2 = \dot{q}_1$.

Груз 1 находится в сложном движении, поэтому

$$\vec{V}_1 = \vec{V}_{1r} + \vec{V}_{1e}$$
 .

Переносным движением груза 1 является поступательное движение со скоростью V_4 , скорость относительного движения равна \dot{q}_2 . С учетом направления векторов, получаем

$$V_1 = V_{1r} + V_{1e} = \dot{q}_2 + \dot{q}_1$$
.

Аналогично получаем выражение для скорости груза 3 (он также находится в сложном движении, однако вектора относительной и переносной скоростей направлены в разные стороны)

$$\vec{V}_3 = \vec{V}_{3r} + \vec{V}_{3e}$$
 ,

$$V_3 = V_{3r} - V_{3e} = \dot{q}_2 - \dot{q}_1$$
.

Найдем угловую скорость ω_4 подвижного блока 4. Поскольку переносное движение тел 1, 2 и 4 одинаковое (поступательное со скоростью V_4), угловая скорость ω_4 не зависит от переносного движения, а зависит только от относительного, т. е.

$$\omega_4 = \frac{V_{1r}}{r_4} = \frac{\dot{q}_2}{r_4}$$
 .

Если это не очевидно, можно, действуя формально, найти мгновенный центр скоростей блока 4 и вычислить его угловую скорость следующим образом

$$\omega_4 = \frac{V_1}{KC_V} = \frac{V_4}{OC_V} = \frac{V_1 - V_4}{KC_V - OC_V} = \frac{V_1 - V_4}{r_4} = \frac{\dot{q}_2 + \dot{q}_1 - \dot{q}_1}{r_4} = \frac{\dot{q}_2}{r_4} \quad .$$

Подставим выражения скоростей, а также выражения моментов инерции блоков 4 и 5

$$I_4 = \frac{m_4 r_4^2}{2}$$
 , $I_5 = \frac{m_5 r_5^2}{2}$

в выражение кинетической энергии системы

$$T = \frac{m_2 \dot{q}_1^2}{2} + \frac{m_5 r_5^2 \dot{q}_1^2}{4r_5^2} + \frac{m_4 \dot{q}_1^2}{2} + \frac{m_4 r_4^2 \dot{q}_2^2}{4r_4^2} + \frac{m_3 (\dot{q}_2 - \dot{q}_1)^2}{2} + \frac{m_1 (\dot{q}_2 + \dot{q}_1)^2}{2} \quad .$$

Раскроем скобки и сгруппируем слагаемые относительно $\dot{q}_1^2,~\dot{q}_2^2$ и $\dot{q}_1\dot{q}_2$

$$T = \left(m_1 + m_2 + m_3 + m_4 + \frac{m_5}{2}\right) \frac{1}{2} \dot{q}_1^2 + \left(m_1 + m_3 + \frac{m_4}{2}\right) \frac{1}{2} \dot{q}_2^2 + \left(m_1 - m_3\right) \dot{q}_1 \dot{q}_2 =$$

$$= A \frac{1}{2} \dot{q}_1^2 + B \frac{1}{2} \dot{q}_2^2 + C \dot{q}_1 \dot{q}_2 \quad , \qquad (2)$$

где
$$A = m_1 + m_2 + m_3 + m_4 + \frac{m_5}{2}$$
 , $B = m_1 + m_3 + \frac{m_4}{2}$, $C = m_1 - m_3$. (3)

2. Вычислим производные от кинетической энергии (2)

$$\frac{\partial T}{\partial \dot{q}_1} = A \frac{1}{2} 2 \dot{q}_1 + C \dot{q}_2 = A \dot{q}_1 + C \dot{q}_2 \quad , \qquad \qquad \frac{\partial T}{\partial \dot{q}_2} = B \frac{1}{2} 2 \dot{q}_2 + C \dot{q}_1 = B \dot{q}_2 + C \dot{q}_1 \quad , \label{eq:deltaT}$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_1} \right) = A \ddot{q}_1 + C \ddot{q}_2 \quad , \qquad \qquad \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_2} \right) = B \ddot{q}_2 + C \ddot{q}_1 \quad , \tag{4}$$

$$\frac{\partial T}{\partial q_1} = 0 \quad , \qquad \qquad \frac{\partial T}{\partial q_2} = 0 \quad . \tag{5}$$

- 3. Найдем обобщенные силы. Для этого изобразим на рис. 9.3а,6 активные силы, действующие на тела системы. К этим силам относятся силы тяжести, $m_1\vec{g}$, $m_2\vec{g}$, $m_3\vec{g}$, $m_4\vec{g}$, $m_5\vec{g}$, а также реакции \vec{F}_{TP} и \vec{N} неидеальной связи плоскости, вдоль которой движется груз 2.
- а). Зафиксируем координату q_1 (т. е. будем считать, что груз 2 неподвижен относительно опорной плоскости), дадим системе возможное перемещение (рис. 9.3a) и запишем сумму элементарных работ активных сил на этом перемещении

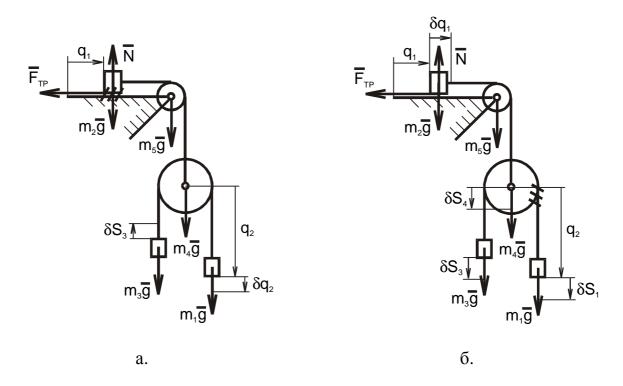


Рис. 9.3

$$\sum_{k} \delta A_{k}^{a} = m_{1}g \cdot \delta q_{2} - m_{3}g \cdot \delta S_{3} = (m_{1} - m_{3})g \cdot \delta q_{2}$$
 (t. k. $\delta S_{3} = \delta q_{2}$).

Отсюда найдем обобщенную силу Q_2

$$Q_2 = (m_1 - m_3)g . (6)$$

б). Зафиксируем координату q_2 (будем считать, что груз 1 неподвижен относительно блока 4), дадим системе возможное перемещение (рис. 9.3б) и запишем сумму элементарных работ активных сил

$$\begin{split} \sum_k \delta\!A_k^a &= -F_{TP} \cdot \delta\!q_1 + m_4 g \cdot \delta\!S_4 + m_1 g \cdot \delta\!S_1 + m_3 g \cdot \delta\!S_3 = \\ &= \left(-f m_2 + m_4 + m_1 + m_3 \right) \! g \cdot \delta\!q_1 \\ (\text{ т. к.} \qquad \delta\!S_4 \!\!=\! \delta\!S_1 \!\!=\! \delta\!S_3 \!\!=\! \delta\!q_1 \;, \qquad F_{TP} \!\!=\! \!f\!N \!\!=\! \!f\!m_2 g \;) \;\;. \end{split}$$

Отсюда найдем обобщенную силу Q_I

$$Q_1 = (m_1 - fm_2 + m_3 + m_4)g . (7)$$

4. Запишем дифференциальные уравнения движения системы. Для этого подставим выражения (4), (5), (6) и (7) в уравнения (1)

$$\begin{cases}
A\ddot{q}_1 + C\ddot{q}_2 = (m_1 - fm_2 + m_3 + m_4)g \\
B\ddot{q}_2 + C\ddot{q}_1 = (m_1 - m_3)g
\end{cases}$$
(8)

Подставив выражения (3) констант A, B и C в уравнения (8), получим ответ

$$\begin{cases} \left(m_1 + m_2 + m_3 + m_4 + \frac{m_5}{2}\right) \ddot{q}_1 + \left(m_1 - m_3\right) \ddot{q}_2 = \left(m_1 - fm_2 + m_3 + m_4\right) g \\ \left(m_1 + m_3 + \frac{m_4}{2}\right) \ddot{q}_2 + \left(m_1 - m_3\right) \ddot{q}_1 = \left(m_1 - m_3\right) g \end{cases}$$

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РАБОТ

- 1. Расчетно-графические работы выполняются на листах писчей или чертежной бумаги формата A4 (210×297 мм). Текст и рисунки наносятся только на одну сторону листа. Выполнение рисунков «от руки» не допускается.
- 2. Первая страница представляет собой титульный лист, образец которого приведен ниже.
- 3. На второй странице записывается условие задания, вычерчивается заданная схема и выписываются из таблицы все данные (для соответствующего варианта).
 - 4. Решение задачи начинается с третьей страницы, на которой вычерчивается расчетная схема механизма. Схема выполняется аккуратно, четко и в таком масштабе, который позволит ясно изобразить все необходимые размеры, векторы сил, моментов и т. д..

Образец титульного листа

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Теоретическая механика»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА Вариант №								
	Студент							
	Группа							
	Преподаватель							

MOCKBA 2006

Под редакцией д.ф.-м.н., проф. Бондаря Валентина Степановича Расчетно-графические работы по динамике.

Методические указания по курсу «Теоретическая механика» для студентов всех специальностей очной и очно-заочной форм обучения.

Подписано в печать Заказ Тираж экз.

Усл. п. л. Уч.-изд. л.

Бумага типографская Формат 60×90/16

МГТУ «МАМИ», 105839, Москва, Б. Семеновская, 38.