Задание 2.

Расчёт на прочность статически неопределимой системы при растяжении (сжатии) с учётом температурных деформаций

Задание и варианты к расчётно-проектировочной работе

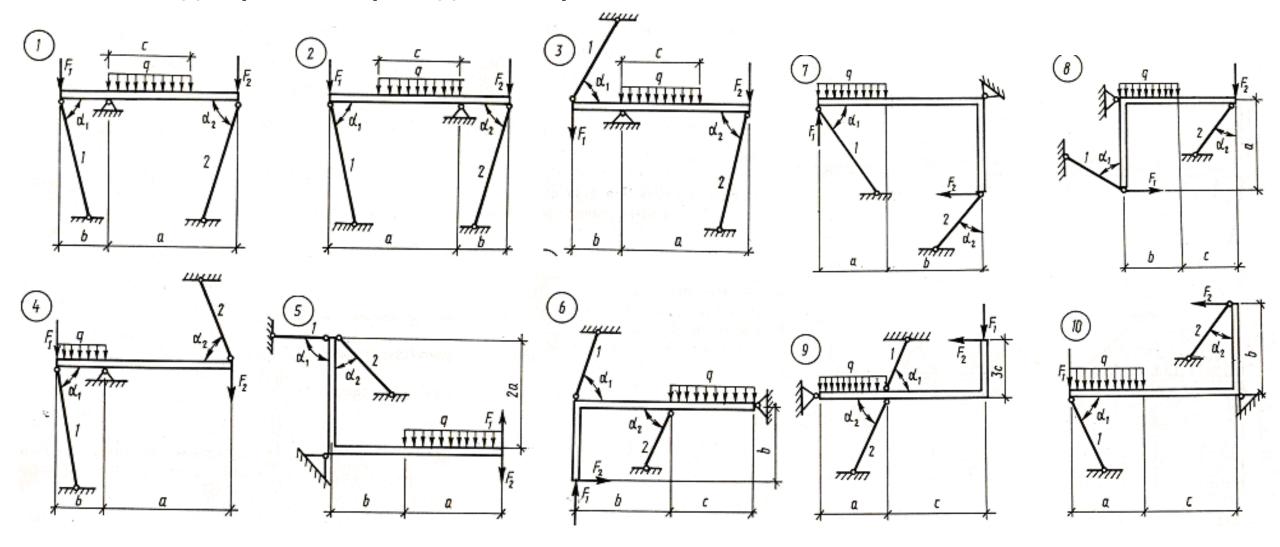
Статически неопределимая стержневая система загружена внешней нагрузкой (рис. 1, вариант выбирается по последней цифре номера зачетной книжки). Первый стержень нагревается на $\Delta t = 100^{\circ}$ C,

а второй - изготовлен короче номинального размера на δ_2 = 0,25 мм.

Требуется:

Определить усилия в стержнях, учитывая, что первый стержень стальной (модуль продольной упругости $E_1 = 2 \times 10^5 \, \text{МПа};$ коэффициент линейного температурного расширения $\alpha_t = 1,25 \times 10^{-5});$ а второй — медный (модуль продольной упругости $E_2 = 10^5 \, \text{МПа}).$ Определить напряжения в стержнях и проверить их прочность, принимая допускаемые напряжения:

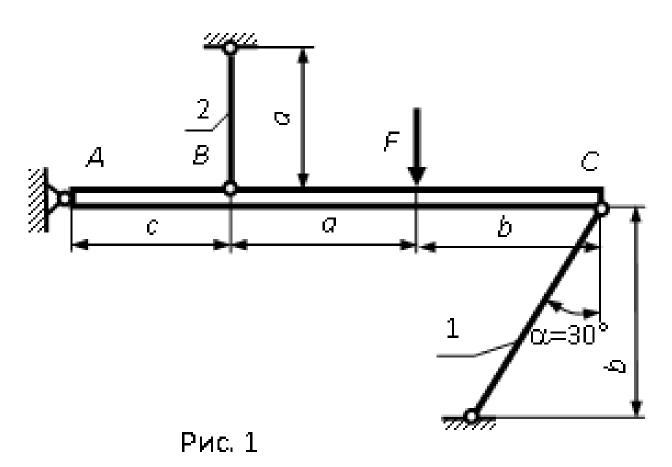
для стального стержня - [σ] = 160 МПа, для медного - [σ] = 80 МПа.


Из условия прочности для наиболее нагруженного стержня определить допускаемую нагрузку [F].

Числовые данные – в таблице 1 (вариант выбирается по предпоследней цифре номера зачётной книжки).

Таблица 1

Номер варианта	Нагрузка			Длина участков элемента и стержней, м					Площадь сечения, см ²		Угол, град.	
	<i>F</i> ₁ , κΗ	F ₂ , кН	<i>q</i> , кН/м	a	b	С	<i>I</i> ₁	<i>I</i> ₂	A ₁	A_2	a_1	α_2
1	-	60	-	5,4	2,6	0,8	1,0	1,2	6	12	90	45
2	30	-	-	4,8	2,8	1,2	1,4	1,0	8	10	45	90
3	20	-	-	4,6	2,4	1,4	1,0	1,4	6	8	90	30
4	-	-	8	4,4	2,8	0,8	1,4	1,2	6	6	60	90
5	-	25	-	4,8	2,6	0,6	1,4	1,0	10	8	90	120
6	-	20	-	4,6	2,6	1,4	1,6	1,4	6	10	135	90
7	50	-	-	5,2	2,4	1,0	1,4	1,2	8	12	90	135
8	-	-	12	4,8	3,2	0,8	1,0	1,4	6	6	60	90
9	-	-	10	4,8	2,6	1,4	1,2	1,6	8	8	90	30
0	-	40	-	4,6	2,4	1,2	1,2	1,0	12	8	30	90


Схемы для расчета приведены на рис. 1

Пример 1

Статически неопределимая стержневая система (рис. 1), загружена силой F=400 кH. Первый стержень нагревается на $\Delta t=50^{\circ}$ C, а второй - изготовлен короче номинального размера на $\delta_2=0.5 \text{ мм}$. Расстояния между характерными сечениями: a=2.6 м; b=2.7 м; c=1.4 м. Площади поперечных сечений стержней:

 $A_1 = 26 \text{ cm}^2$; $A_2 = 13 \text{ cm}^2$.

Требуется:

1. Определить усилия в стержнях, учитывая, что первый стержень стальной (модуль нормальной упругости $E_1 = 2 \times 10^5 \, \text{М}\Pi a;$

коэффициент линейного температурного расширения $\alpha_t = 1,25 \times 10^{-5}$);

- а второй медный (модуль нормальной упругости $E_2 = 10^5 \, \text{М} \, \text{Па}$).
- 2. Определить напряжения в стержнях и проверить их прочность, принимая допускаемые напряжения: для стального стержня:

 $[\sigma]$ =160 МПа, для медного: $[\sigma]$ = 80 МПа.

Из условия прочности для наиболее нагруженного стержня определить допускаемую нагрузку [F].

Решение:

1. Статическая сторона задачи.

Определим длину первого стержня из геометрических соображений: $I_1 = 3,12$ м.

Рассекаем стержни. Неизвестные усилия N_i направляем в положительную сторону (на растяжение стержня, это правило знаков должно строго выдерживаться, рис. 2). Уравнение равновесия используем одно:

$$\sum M_{\Delta} = 0$$
: $N_{2}c - F(c + a) - N_{1}(a + b + c) \cos \alpha = 0$.

Подставляя численные значения, получим: N₂ - 2,86F - 4,14N₁ = 0. (4.1)

Степень статической неопределимости системы определяем как разницу между числом неизвестных усилий N_i (их два) и числом независимых уравнений равновесия (одно).

$$i = 2 - 1 = 1$$
.

Система один раз статически неопределима. Необходимо одно дополнительное уравнение, которое получим, рассматривая геометрическую сторону задачи.

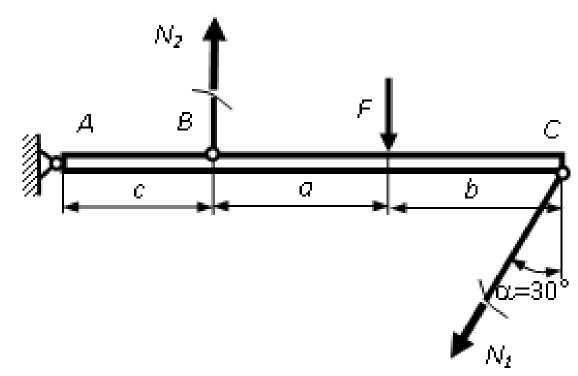
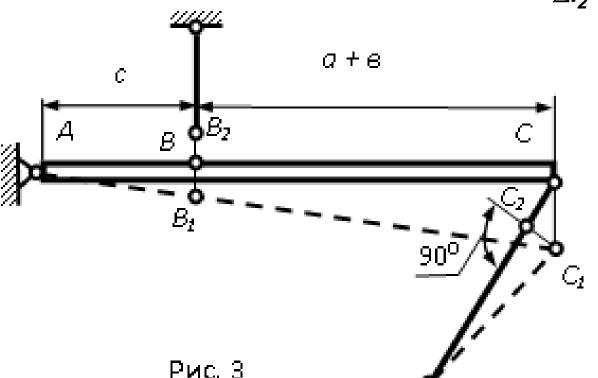


Рис. 2


2. Геометрическая сторона задачи

Показываем расчетную схему в деформированном виде (рис. 3). Задача в том, чтобы получить уравнение, связывающее деформации стержней.

На рисунке видны принятые упрощения при рассмотрении деформации системы – перемещения точек В и С показываем по прямой линии, а не по окружности с центром в точке А. При выделении удлинения первого стержня ДІ₁ принято из точки С₁ проводить перпендикуляр для получения точки C₂. Принимаем ΔI₁ = CC₂.

Удлинение второго стержня определяем геометически с учётом заданной $\Delta I_2 = BB_1 + \delta_2$. Отсюда $BB_1 = \Delta I_2 - \delta_2$.

неточности изготовления б2:

Рассматриваем прямоугольный треугольник СС1С2: $CC_1 = CC_2/\cos 30 = \Delta I_1/\cos \alpha$ из подобия треугольников САС1 и ВАВ1:

$$\frac{BB_1}{c} = \frac{CC_1}{a+b+c}$$
 или $\frac{\Delta l_2 - \delta}{c} = \frac{\Delta l_1}{\cos\alpha(a+b+c)}$ Откуда

$$\Delta l_1 = \frac{\Delta l_2 - \delta}{c} (a + b + c) cos\alpha = 4,14(\Delta l_2 - \delta_2).$$
 (4.2)

3. Физическая сторона задачи.

Записываем уравнения закона Гука для каждого стержня:

$$-\Delta l_1 = \frac{N_1 l_1}{E_1 A_1} + \alpha_t l_1 \Delta t_1; \quad \Delta l_2 = \frac{N_2 l_2}{E_2 A_2}$$
 (4.3)

Знак минус у усилия первого стержня поставлен потому, что на рисунке деформированного состояния этот стержень сжат (это правило знаков должно строго выдерживаться). На этом этапе должны учитываться и температурные деформации.

4. Математическая сторона задачи.

Решаем совместно полученные уравнения (4.1)-(4.3) и вычисляем величины неизвестных усилий в стержнях.

Уравнения (4.3) подставляем в (4.2): $-\frac{N_1 l_1}{E_1 A_1} - \alpha_t l_1 t_1 = 4.14 \left(\frac{N_2 l_2}{E_2 A_2} - \delta_2 \right)$

Получим: $N_1 = 20200 - 13,8N_2$. (4.4)

Подставляем (4.4) в (4.1) и получаем: N₂ = 21,1 кH.

Из (4.4) получим: $N_1 = -271 \text{ кH}.$

4. Проверяем прочность стержней. Вычисляем напряжения в стержнях:

$$\sigma_1 = \frac{N_1}{A_1} = -\frac{271 \cdot 10^3}{26 \cdot 10^2} = -104 \text{M}\Pi \text{a}; \qquad \qquad \sigma_2 = \frac{N_2}{A_2} = \frac{21,1 \cdot 10^3}{13 \cdot 10^2} = 16,2 \text{M}\Pi \text{a};$$

Условие прочности выполняется:

$$|\sigma_i| \leq [\sigma];$$
 104 <160 M Π a; 16,2 < 80 M Π a.

Определяем допускаемую нагрузку, которую можно приложить к системе. Вычисления нужно вести по наиболее напряжённому стержню, для этого заданную внешнюю нагрузку умножаем на минимальное отношение допускаемого напряжения и расчетного напряжения в стержнях:

$$[F] = F \cdot [\sigma] / |\sigma_1| = 400 \times 160/104 = 604 \text{ kH}.$$